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ABSTRACT: We present a formulation of the multiconfigura-
tional (MC) wave function symmetry-adapted perturbation theory
(SAPT). The method is applicable to noncovalent interactions
between monomers which require a multiconfigurational descrip-
tion, in particular when the interacting system is strongly correlated
or in an electronically excited state. SAPT(MC) is based on one-
and two-particle reduced density matrices of the monomers and
assumes the single-exchange approximation for the exchange
energy contributions. Second-order terms are expressed through
response properties from extended random phase approximation (ERPA). The dispersion components of SAPT(MC) have been
introduced in our previous works [Hapka, M. et al. J. Chem. Theory Comput. 2019, 15, 1016−1027; Hapka, M. et al. J. Chem. Theory
Comput. 2019, 15, 6712−6723]. SAPT(MC) is applied either with generalized valence bond perfect pairing (GVB) or with complete
active space self-consistent field (CASSCF) treatment of the monomers. We discuss two model multireference systems: the H2 ··· H2
dimer in out-of-equilibrium geometries and interaction between the argon atom and excited state of ethylene. Using the C2H4* ··· Ar
complex as an example, we examine second-order terms arising from negative transitions in the linear response function of an excited
monomer. We demonstrate that the negative-transition terms must be accounted for to ensure qualitative prediction of induction
and dispersion energies and develop a procedure allowing for their computation. Factors limiting the accuracy of SAPT(MC) are
discussed in comparison with other second-order SAPT schemes on a data set of small single-reference dimers.

1. INTRODUCTION
Quantum chemistry offers two complementary approaches to
noncovalent interactions, the supermolecular approach and
energy decomposition methods. The former is conceptually
simple and capable of providing the most accurate potential
energy surfaces, e.g., for interpretation of experiments carried
out in the cold- and ultracold regimes.1−3 The latter,
decomposition methods, allow insight into the nature of the
interaction by partitioning the interaction energy into well-
defined contributions. The symmetry-adapted perturbation
theory (SAPT)4,5 can be considered one of decomposition
methodsit provides representation of the interaction energy
as a sum of directly calculated components with a clear physical
interpretation. Modern SAPT methods not only serve as
interpretative tools for systems as large as enzymes exceeding
3000 atoms,6 but have also been applied to generate potential
energy surfaces for quantitative predictions, e.g., calculations of
scattering cross-sections, predictions of spectra and bulk matter
properties, as well as the development of force fields for
biomolecules (see, e.g., refs 7−11).
In contrast to the rich toolbox dedicated to single-

determinantal wave functions,12,13 describing intermolecular
interactions in complexes that demand multiconfigurational
(MC) wave functions presents a challenge. The multiconfigura-
tional treatment is often mandatory for transition-metal
complexes, open-shell systems, electronically excited states, or

systems dominated by static correlation effects. From the
standpoint of weak intermolecular forces, proper representation
of static correlation, warranted by expansion in multiple electron
configurations, is not sufficient. The main difficulty lies in the
recovery of the remaining dynamic correlation both within and
between the interacting molecules. The latter effect, giving rise
to the attractive dispersion interaction, poses a particular
challenge due to its highly nonlocal and long-range nature.
Although many multireference methods restoring dynamic
correlation effects have been developed, neither has yet
managed to combine the accuracy and efficiency required for
noncovalent interactions.
Application of multireference approaches in supermolecular

calculations is often difficult due to the limitations of the
methods themselves. For instance, the accuracy of the popular
multireference configuration interaction (MRCI) approach14

and multireference perturbation theories15,16 is limited by the
lack of triple excitations and truncation of the perturbation series
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Figure 2: Structures of ⇡-⇡⇤ and n-⇡⇤ complexes analyzed in this work.

integrals and reduced density matrices were obtained from the locally modified Molpro84

package. Supermolecular CASSCF and DFT-SAPT calculations were performed in Molpro.

All calculations employed aug-cc-pVTZ basis set.85

Although MP2 orbitals were used as a starting guess for the CASSCF computations,

further orbitals rotations were required in almost all cases for ground- and excited-state

complexes to assure that the desired orbitals are included in the active space and to main-

tain size-consistency in the supermolecular approach. Excited-state wave functions were

computed with two-state state-averaged CASSCF. We chose the same active spaces for both

ground- and excited-state calculations. The active space for benzene included three ⇡ bond-

ing and the three ⇡⇤ antibonding MOs, which means 6 active electrons on 6 orbitals, labeled

as CAS(6,6).86 For AcOH we chose CAS(8,8) active space including n, ⇡, ⇡⇤, and �
⇤ or-

bitals.87 For AcNH2 the CAS(6,5) space was selected which involves �, n, ⇡, ⇡⇤, and �
⇤

orbitals.88 The peptide (N-methylacetamide) active space, CAS(6,6), was composed of �, ⇡,

⇡
⇤ and �

⇤ orbitals, and two lone pair orbitals located on oxygen orbital n.89
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Eint changes by 0.15 kcal/mol. Mainly electrostatic and dispersion interaction effects.

SAPT(MC) in GammCor: up to 102 electrons in 103 basis set functions.

Wavefunctions for monomers: CASSCF, CI.
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Figure 1: Molecular structures of (a) n-acenes series (n = 2 ! 7), (b) Fe(II)-porphyrin, and (c)
[Fe3S4(SCH3)3]�2 complex. The color codes are as follows: Fe (grey), N (blue), C (brown), S
(yellow), and H (white).

SCF.53,54 Since different elements of the two-
body RDMs are collected at different iterations
of the DMRG sweep,55 the one-site DMRG al-
gorithm, which indeed does not contain any
truncation, has to be used for the final com-
putations of the two-body RDMs to assure
the same accuracy of all their elements.53 By
construction, such two-body RDMs are N-
representable53 and if obtained from DMRG-
SCF procedure with sufficiently large M , they
are equivalent to RDMs, which would follow
from CASSCF calculations in the same active
space.

Adiabatic connection

The AC theory39 is a general approach to the
correlation energy calculation, which can be ap-
plied to a broad class of multireference wave
functions in the form of group product func-
tions. Since CAS-like wave functions belong
to this category, it can be directly applied on
top of DMRG or DMRG-SCF. The AC recov-
ers the correlation energy missing in the under-
lying multireference model and the total elec-
tronic energy follows as the sum

E = E
DMRG + E

AC
corr, (5)

where E is in principle exact in the exact AC
formulation.

The AC formula linearly interpolates between
the zeroth-order Hamiltonian H

(0) and the ex-

act one, H (eq 4)

H = H
(0) + ↵H

0
, with H

0 = H �H
(0)
, (6)

and ↵ : 0 ! 1,

where H
(0) can be expressed as a sum of group

Hamiltonians HI ,39,40

H
(0) =

X

I

HI (7)

which for the case of CAS-like reference wave
functions comprises terms corresponding to the
doubly occupied (inactive) and active orbitals
sets. There is arbitrariness in including a group
Hamiltonian corresponding to virtual (unoccu-
pied) orbitals in H

(0), i.e. Hamiltonian terms
including virtual orbitals could be entirely in-
cluded only in H

0, as well. The group Hamilto-
nians have a similar structure to the full Hamil-
tonian

HI =
X

�

X

pq2I

h
eff
pqa

†
p�aq� +

+
1

2

X

��0

X

pqrs2I

hpq|rsia†p�a
†
q�0as�0ar� , (8)

where h
eff
pq denote an effective one-particle

Hamiltonian matrix including for a given group
I a sum of kinetic and electron-nuclei interac-
tion energy matrix, hpq and a mean-field inter-
action with electrons in the remaining groups
J
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ABSTRACT: The quantum chemical version of the density matrix renormalization
group (DMRG) method has established itself as one of the methods of choice for
calculations of strongly correlated molecular systems. Despite its great ability to
capture strong electronic correlation in large active spaces, it is not suitable for
computations of dynamical electron correlation. In this work, we present a new
approach to the electronic structure problem of strongly correlated molecules, in
which DMRG is responsible for a proper description of the strong correlation,
whereas dynamical correlation is computed via the recently developed adiabatic
connection (AC) technique which requires only up to two-body active space reduced
density matrices. We report the encouraging results of this approach on typical
candidates for DMRG computations, namely, n-acenes (n = 2 → 7), Fe(II)−porphyrin, and the Fe3S4 cluster.

■ INTRODUCTION
Strongly correlated molecules (and ions) undoubtedly
represent one of the most challenging problems of current
quantum chemistry. There exist several approaches to tackle
systems for which a single Slater determinant is not a sufficient
starting point for a correlation energy treatment. An appealing
strategy is to use multireference (MR) formulations of
standard computational methods. However, development of
robust MR extensions is typically not trivial. The prominent
examples are density functional theory (DFT),1 a highly
successful single reference approach with a favorable scaling, or
coupled cluster (CC) theory2 with CCSD(T) providing a
spectroscopic accuracy in single-reference cases.3 Although
several MR formulations of DFT4−8 and CC9 have been
introduced, none of them is an obvious choice and their
development is still an active area of research.
A different approach to proper description of near-

degenerate states is the use of multiconfiguration self-
consistent field (MCSCF) methods, among which the
complete active space self-consistent field (CASSCF)10 is the
most popular. In MCSCF approaches, the dynamical
correlation is taken into account by post-SCF methods, such
as complete active space second-order perturbation theory
(CASPT2),11 second-order n-electron valence state perturba-
tion theory (NEVPT2),12 or the multireference configuration
interaction (MRCI).13 All of the aforementioned CASSCF-
based approaches are limited to small active spaces (less than
20 orbitals) due to the full configuration interaction (FCI)
wave function expansion within the active space.
There exists a plethora of highly important molecular

systems that require much larger active spaces than the
CASSCF can provide. Among others, transition-metal

complexes with multiple transition-metal atoms or polycyclic
aromatic hydrocarbons belong here. One of the methods with
the ability to capture strong correlations in active spaces
containing tens of molecular orbitals is the density matrix
renormalization group (DMRG). DMRG was originally
developed for computations of one-dimensional model systems
in solid-state physics.14,15 However, since its introduction in
quantum chemistry,16 it has established itself as a powerful
technique suitable for generic strongly correlated molecules
requiring very large active spaces.17−21 DMRG computations
of biologically relevant complexes with multiple transition-
metal centers22−26 belong to the most advanced quantum
chemical applications of DMRG.
Despite the favorable scaling of the DMRG method, it is

computationally prohibitive to treat the dynamical electron
correlation by including all virtual orbitals into the active space.
Several post-DMRG methods capturing the missing dynamical
correlation have been developed. Probably, the most
commonly used are many-body perturbation theories,
DMRG−CASPT227 and DMRG−NEVPT2.28,29 Their bottle-
neck, however, is that they require the three- and four-body
reduced density matrix (RDM) elements, which complicate
their use in connection with larger active spaces that DMRG
itself is suited to handle. An alternative formulation of
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Fe(II)-porphyrin 

Quintet-Triplet energy gap

40 active electrons in 42 orbitals

Wall Time of AC0 calc.: ~103 sec.


