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CPU AND GPU MEMORIES
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CPU + GPU
Physical Diagram

▪ CPU memory is larger, GPU memory has 
more bandwidth

▪ CPU and GPU memory are usually separate, 
connected by an I/O bus (traditionally PCI-e)

▪ Any data transferred between the CPU and 
GPU will be handled by the I/O Bus

▪ The I/O Bus is relatively slow compared to 
memory bandwidth

▪ The GPU cannot perform computation until the 
data is within its memory
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CUDA UNIFIED MEMORY
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Simplified Developer Effort

Without Managed Memory With Managed Memory

Managed MemorySystem 
Memory

GPU Memory

Commonly referred to as 

“managed memory.”

CUDA UNIFIED MEMORY

CPU and GPU memories are 
combined into a single, shared pool
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CUDA MANAGED MEMORY

▪ Handling explicit data transfers between the host and device (CPU and GPU) can be 
difficult

▪ The NVIDIA HPC compiler can utilize CUDA Managed Memory to defer data 
management

▪ This allows the developer to concentrate on parallelism and think about data 
movement as an optimization

Usefulness

$ nvc –fast –acc –ta=tesla:managed –Minfo=accel main.c

$ nvfortran –fast –acc –ta=tesla:managed –Minfo=accel main.f90
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MANAGED MEMORY

▪ The programmer will almost always be able to 
get better performance by manually handling 
data transfers

▪ Memory allocation/deallocation takes longer 
with managed memory

▪ Cannot transfer data asynchronously

▪ Currently only available on NVIDIA GPUs with 
NVIDIA HPC SDK.

Limitations

With Managed Memory

Managed Memory
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DATA SHAPING
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DATA CLAUSES

copy( list ) Allocates memory on GPU and copies data from host to GPU when 
entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a 
logical default to input, modify and return the data.

copyin( list ) Allocates memory on GPU and copies data from host to GPU when 
entering region.

Principal use: Think of this like an array that you would use as  just an 
input to a subroutine.

copyout( list ) Allocates memory on GPU and copies data to the host when exiting 
region.

Principal use: A result that isn’t overwriting the input data structure.

create( list ) Allocates memory on GPU but does not copy.

Principal use: Temporary arrays.
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ARRAY SHAPING

▪ Sometimes the compiler needs help understanding the shape of an array

▪ The first number is the start index of the array

▪ In C/C++, the second number is how much data is to be transferred

▪ In Fortran, the second number is the ending index

copy(array(starting_index:ending_index))

copy(array[starting_index:length]) C/C++

Fortran
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OPTIMIZED DATA MOVEMENT

while ( err > tol && iter < iter_max ) {

err=0.0;

#pragma acc parallel loop reduction(max:err) copyin(A[0:n*m]) copy(Anew[0:n*m])

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop copyin(Anew[0:n*m]) copyout(A[0:n*m])

for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];      

}

}

iter++;

}

Data clauses 

provide necessary 

“shape” to the 

arrays.
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OPENACC SPEED-UP SLOWDOWN
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RUNTIME BREAKDOWN

Data Copy H2D Data Copy D2H CalcNext Swap

Nearly all of our 

time is spent 

moving data to/from 

the GPU
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OPTIMIZED DATA MOVEMENT

while ( err > tol && iter < iter_max ) {

err=0.0;

#pragma acc parallel loop reduction(max:err) copyin(A[0:n*m]) copy(Anew[0:n*m])

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop copyin(Anew[0:n*m]) copyout(A[0:n*m])

for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];      

}

}

iter++;

}

Currently we’re 

copying to/from the 

GPU for each loop, 

can we reuse it?
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OPTIMIZE DATA MOVEMENT
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OPENACC DATA DIRECTIVE

▪ The data directive defines a lifetime 
for data on the device beyond 
individual loops

▪ During the region data is essentially 
“owned by” the accelerator

▪ Data clauses express shape and 
data movement for the region

Definition

#pragma acc data clauses
{

< Sequential and/or Parallel code >

}

!$acc data clauses

< Sequential and/or Parallel code >

!$acc end data
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OPTIMIZED DATA MOVEMENT

#pragma acc data copy(A[:n*m]) copyin(Anew[:n*m])

while ( err > tol && iter < iter_max ) {

err=0.0;

#pragma acc parallel loop reduction(max:err) copyin(A[0:n*m]) copy(Anew[0:n*m])

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop copyin(Anew[0:n*m]) copyout(A[0:n*m])

for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];      

}

}

iter++;

}

Copy A to/from the 

accelerator only when 

needed.

Copy initial condition of 

Anew, but not final value 
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REBUILD THE CODE

nvc -fast -ta=tesla -Minfo=accel laplace2d_uvm.c

main:

60, Generating copy(A[:m*n])

Generating copyin(Anew[:m*n])

64, Accelerator kernel generated

Generating Tesla code

64, Generating reduction(max:error)

65, #pragma acc loop gang /* blockIdx.x */

67, #pragma acc loop vector(128) /* threadIdx.x */

67, Loop is parallelizable

75, Accelerator kernel generated

Generating Tesla code

76, #pragma acc loop gang /* blockIdx.x */

78, #pragma acc loop vector(128) /* threadIdx.x */

78, Loop is parallelizable

Now data movement only 

happens at our data 

region.
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WHAT WE’VE LEARNED SO FAR

▪ CUDA Unified (Managed) Memory is a powerful porting tool

▪ GPU programming without managed memory often requires data shaping

▪ Moving data at each loop is often inefficient

▪ The OpenACC Data region can decouple data movement and computation
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DATA SYNCHRONIZATION
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update:  Explicitly transfers data between the host and the device

Useful when you want to synchronize data in the middle of a data region

Clauses:

self: makes host data agree with device data

device: makes device data agree with host data

#pragma acc update self(x[0:count])

#pragma acc update device(x[0:count])

!$acc update self(x(1:end_index))

!$acc update device(x(1:end_index))

Fortran

C/C++

OPENACC UPDATE DIRECTIVE
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Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC RESOURCES
Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools 
https://www.openacc.org/tools

FREE 

Compilers

NVIDIA 

HPC 

SDK

https://www.openacc.org/community

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.openacc.org/community#slack
https://www.openacc.org/community
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