
OPENACC DATA MANAGEMENT

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CPU AND GPU MEMORIES

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CPU + GPU
Physical Diagram

▪ CPU memory is larger, GPU memory has
more bandwidth

▪ CPU and GPU memory are usually separate,
connected by an I/O bus (traditionally PCI-e)

▪ Any data transferred between the CPU and
GPU will be handled by the I/O Bus

▪ The I/O Bus is relatively slow compared to
memory bandwidth

▪ The GPU cannot perform computation until the
data is within its memory

High

Capacity

Memory

Shared Cache

High Bandwidth

Memory

Shared Cache

$ $ $ $ $ $ $ $

$ $ $ $ $ $

$ $ $ $ $ $

IO Bus

GPUCPU

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA UNIFIED MEMORY

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Simplified Developer Effort

Without Managed Memory With Managed Memory

Managed MemorySystem
Memory

GPU Memory

Commonly referred to as

“managed memory.”

CUDA UNIFIED MEMORY

CPU and GPU memories are
combined into a single, shared pool

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA MANAGED MEMORY

▪ Handling explicit data transfers between the host and device (CPU and GPU) can be
difficult

▪ The NVIDIA HPC compiler can utilize CUDA Managed Memory to defer data
management

▪ This allows the developer to concentrate on parallelism and think about data
movement as an optimization

Usefulness

$ nvc –fast –acc –ta=tesla:managed –Minfo=accel main.c

$ nvfortran –fast –acc –ta=tesla:managed –Minfo=accel main.f90

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MANAGED MEMORY

▪ The programmer will almost always be able to
get better performance by manually handling
data transfers

▪ Memory allocation/deallocation takes longer
with managed memory

▪ Cannot transfer data asynchronously

▪ Currently only available on NVIDIA GPUs with
NVIDIA HPC SDK.

Limitations

With Managed Memory

Managed Memory

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

DATA SHAPING

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

DATA CLAUSES

copy(list) Allocates memory on GPU and copies data from host to GPU when
entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a
logical default to input, modify and return the data.

copyin(list) Allocates memory on GPU and copies data from host to GPU when
entering region.

Principal use: Think of this like an array that you would use as just an
input to a subroutine.

copyout(list) Allocates memory on GPU and copies data to the host when exiting
region.

Principal use: A result that isn’t overwriting the input data structure.

create(list) Allocates memory on GPU but does not copy.

Principal use: Temporary arrays.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ARRAY SHAPING

▪ Sometimes the compiler needs help understanding the shape of an array

▪ The first number is the start index of the array

▪ In C/C++, the second number is how much data is to be transferred

▪ In Fortran, the second number is the ending index

copy(array(starting_index:ending_index))

copy(array[starting_index:length]) C/C++

Fortran

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPTIMIZED DATA MOVEMENT

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop reduction(max:err) copyin(A[0:n*m]) copy(Anew[0:n*m])

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop copyin(Anew[0:n*m]) copyout(A[0:n*m])

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Data clauses

provide necessary

“shape” to the

arrays.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC SPEED-UP SLOWDOWN

1.00X

3.23X

41.80X

0.33X
0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

35.00X

40.00X

45.00X

SERIAL MULTICORE V100 V100 (DATA CLAUSES)

S
p

e
e
d

-U
p

Speed-up

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RUNTIME BREAKDOWN

Data Copy H2D Data Copy D2H CalcNext Swap

Nearly all of our

time is spent

moving data to/from

the GPU

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPTIMIZED DATA MOVEMENT

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop reduction(max:err) copyin(A[0:n*m]) copy(Anew[0:n*m])

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop copyin(Anew[0:n*m]) copyout(A[0:n*m])

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Currently we’re

copying to/from the

GPU for each loop,

can we reuse it?

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPTIMIZE DATA MOVEMENT

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC DATA DIRECTIVE

▪ The data directive defines a lifetime
for data on the device beyond
individual loops

▪ During the region data is essentially
“owned by” the accelerator

▪ Data clauses express shape and
data movement for the region

Definition

#pragma acc data clauses
{

< Sequential and/or Parallel code >

}

!$acc data clauses

< Sequential and/or Parallel code >

!$acc end data

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPTIMIZED DATA MOVEMENT

#pragma acc data copy(A[:n*m]) copyin(Anew[:n*m])

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop reduction(max:err) copyin(A[0:n*m]) copy(Anew[0:n*m])

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop copyin(Anew[0:n*m]) copyout(A[0:n*m])

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Copy A to/from the

accelerator only when

needed.

Copy initial condition of

Anew, but not final value

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

REBUILD THE CODE

nvc -fast -ta=tesla -Minfo=accel laplace2d_uvm.c

main:

60, Generating copy(A[:m*n])

Generating copyin(Anew[:m*n])

64, Accelerator kernel generated

Generating Tesla code

64, Generating reduction(max:error)

65, #pragma acc loop gang /* blockIdx.x */

67, #pragma acc loop vector(128) /* threadIdx.x */

67, Loop is parallelizable

75, Accelerator kernel generated

Generating Tesla code

76, #pragma acc loop gang /* blockIdx.x */

78, #pragma acc loop vector(128) /* threadIdx.x */

78, Loop is parallelizable

Now data movement only

happens at our data

region.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

WHAT WE’VE LEARNED SO FAR

▪ CUDA Unified (Managed) Memory is a powerful porting tool

▪ GPU programming without managed memory often requires data shaping

▪ Moving data at each loop is often inefficient

▪ The OpenACC Data region can decouple data movement and computation

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

DATA SYNCHRONIZATION

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

update: Explicitly transfers data between the host and the device

Useful when you want to synchronize data in the middle of a data region

Clauses:

self: makes host data agree with device data

device: makes device data agree with host data

#pragma acc update self(x[0:count])

#pragma acc update device(x[0:count])

!$acc update self(x(1:end_index))

!$acc update device(x(1:end_index))

Fortran

C/C++

OPENACC UPDATE DIRECTIVE

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC RESOURCES
Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools
https://www.openacc.org/tools

FREE

Compilers

NVIDIA

HPC

SDK

https://www.openacc.org/community

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.openacc.org/community#slack
https://www.openacc.org/community

	Slide 1: OPENACC DATA MANAGEMENT
	Slide 3: CPU AND GPU MEMORIES
	Slide 4: CPU + GPU
	Slide 8: CUDA UNIFIED MEMORY
	Slide 9: CUDA UNIFIED MEMORY
	Slide 10: CUDA MANAGED MEMORY
	Slide 11: MANAGED MEMORY
	Slide 15: DATA SHAPING
	Slide 16: DATA CLAUSES
	Slide 17: ARRAY SHAPING
	Slide 20: OPTIMIZED DATA MOVEMENT
	Slide 22: OPENACC SPEED-UP SLOWDOWN
	Slide 24: RUNTIME BREAKDOWN
	Slide 25: OPTIMIZED DATA MOVEMENT
	Slide 26: OPTIMIZE DATA MOVEMENT
	Slide 27: OPENACC DATA DIRECTIVE
	Slide 29: OPTIMIZED DATA MOVEMENT
	Slide 30: REBUILD THE CODE
	Slide 32: WHAT WE’VE LEARNED SO FAR
	Slide 33: DATA SYNCHRONIZATION
	Slide 34: OPENACC UPDATE DIRECTIVE
	Slide 51: OPENACC RESOURCES

