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HISTORICAL PERSPECTIVE
WHY YOU SHOULD CARE ABOUT GPUS



A BRIEF HISTORY OF SUPERCOMPUTING
Three main generations of supercomputing

YOUR GRANDPARENTS YOUR PARENTS

YOUR GENERATION
By Morn - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=32719361
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A TREND THROUGH HISTORY
Roofline model as a way to understand performance

▪ In the origins of computing memory access was free, all the cost was in FLOPS

▪ Today, FLOPS are (mostly) free once you have the data on the CPU/GPU

▪ Roofline models are hardware specific plots of potential and achieved performance

▪ Peak performance is plotted against “arithmetic intensity”

▪ Arithmetic intensity is the number of floating point operations per byte loaded

▪ 𝑦 = 𝑦 + 10 ∗ 𝑥 + 𝑥 ∗ 𝑥 + 0.5 ∗ 𝑥 ∗ 𝑥 ∗ 𝑥 has two loads of 8 bytes and 8 operations, intensity of 0.5

▪ This would have a peak 400 GFLOP in the graph below

▪ In the olden days, an arithmetic intensity of 1, or 
less, would give you peak performance

▪ On an A100, you need 10-50 for peak 
performance

▪ How does one increase arithmetic intensity?

▪ This is a function of the algorithm

▪ Matrix-Matrix-Multiply (theoretical)

▪ Operations are 2N3 memory accesses are 16N2 

▪ Intensity as high as 1/8th the matrix dimension

▪ Low order finite difference have compute 
intensities around 0.1 to 1.0

▪ High order methods improve on this greatly

▪ Algorithms will have to change to be efficient on 
modern hardware
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WHAT HAS HISTORY TAUGHT US

▪ Radical shifts in hardware will occur in your professional lifetime

▪ I’ve developed software for all three generations listed here

▪ Complexity will increase

▪ Every new generation will have to deal with the challenges of the previous generation

▪ Tools, languages and libraries will help hide the complexity

▪ What we learn today will guide the way we solve things tomorrow

▪ As computers get faster, the speed of light doesn’t change

▪ Memory speed and latency become more and more important

▪ Hardware folks will try to hide this latency by more cache and other tricks

▪ One will have to reuse the data once it has been brought to the computing engine

▪ Algorithms will have to adjust to make the most from the new hardware

▪ The “fastest” algorithm isn’t always the fastest



BUT WHAT IS A GPU



SO, WHAT MAKES A GPU DIFFERENT?

GPUs are about concurrency

Many independent tasks operating at the same time

Many – 10s of thousands



INTEGRATION OF GPUS INTO SYSTEMS

SUMMIT COMPUTE NODE

2 Power9 IBM CPUs

6 NVIDIA V100

NVLINK Interconnect

• Systems have CPUs
• 10% of the FLOPS

• Large system memory

• GPUs – 90% of the FLOPS
• Small(er) memory – 80G

• Low(er) bandwidth to system 
memory – 900GB/s

• Each thread is slower than CPU



A LOOK INSIDE THE GPU
This is similar to what is in Leonardo

▪ What is inside of a GPU?

▪ Clock – 1410 MHz

▪ Processors

▪ 108 SM – Streaming Multiprocessors

▪ Basic unit of computing inside of a GPU

▪ 32 FP64 computational threads

▪ Can perform 32 FMA/cycle

▪ Memory, different types of memory 

▪ HBW memory (16-80G), L2 Cache 40MB, L1/shared 164K/SM, Texture 

▪ Each thread can request 1 double per clock cycle

▪ Schedulers – the unsung hero

FLOPS = 108 SMs*32 Threads*1.41GHz*2 = 9.7TFLOP

Mem = 108 SMs*32 Threads*1.41GHz *8B = 78TB/s

OK, that’s what it can request, but

1.6TB/s is what it can deliver 

GPUs - 5x FLOPS and 10x memory bandwidth CPUs 



GPUS, WHAT ARE THEY GOOD FOR?



WITH GPUS, WHY DO WE HAVE CPUS

With the performance of GPUs, why do we still have CPUs?

GPUs have a much slower clock speed than CPUs

Streaming Multiprocessor (SM) are well, streaming

Designed for SIMT

GPUs are most efficient at a particular type of work
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TAKE THIS CAT IMAGE

Let’s improve this image
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1. Overlay with a grid

FIRST WE BREAK IT UP ACROSS BLOCKS AND SEND TO SM
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1. Overlay with a grid

2. Operate on blocks within the grid

Blocks execute independently

GPU is oversubscribed with blocks

EVERY PART OF THE IMAGE GETS A BUNCH OF THREADS
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1. Overlay with a grid

3. Many threads work 
together in each block 
for local data sharing

2. Operate on blocks within the grid

Blocks execute independently

GPU is oversubscribed with blocks

EACH THREAD MODIFIES ITS PORTION



THAT DATA IS WRITTEN BACK TO MEMORY

Now your cat image is a dog

or

Your CFD variables are updated



NOW THAT YOU CARE ABOUT GPUS
HOW TO USE THEM



YOU HAVE OPTIONS WHEN PROGRAMMING FOR A GPU

▪When GPUs first came out you had Cuda and everything was manual

▪Today – you still have Cuda and you can still do everything yourself

▪However, today you have lots of options

1. You can use language standard features

2. You can use directive based languages

3. You can use frameworks that abstract the hardware away

4. You can use libraries

5. You can write native Cuda

▪Starting with a new code versus an existing code can really affect what path you take



GPU PROGRAMMING MODELS
A brief history

CUDA  1.0

PGI 12.6

PGI 2009

1.0 Specification

2007 2013 2016 2019 2022 Future2010

CUDA C/C++

CUDA Fortran

OpenACC

OpenMP

StdPar

NVIDIA Software Specifications

NVHPC 20.11

4.0 Specification (offload)

NVHPC 20.11

Fortran 2008 Specification C++17 Specification



NVIDIA Compiler and Language Support

std::transform(par, x, x+n, y, y,
[=](float x, float y){ return y + a*x; 

}
);

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

import legate.numpy as np
…
def saxpy(a, x, y):

y[:] += a*x

__global__ 

void saxpy(int n, float a, 

float *x, float *y) { 

int i = blockIdx.x*blockDim.x + 

threadIdx.x; 

if (i < n) y[i] += a*x[i]; 

} 

int main(void) { 

...

cudaMemcpy(d_x, x, ...);

cudaMemcpy(d_y, y, ...);

saxpy<<<(N+255)/256,256>>>(...); 

cudaMemcpy(y, d_y, ...);

Platform SpecializationAccelerated Standard Languages

Acceleration Libraries

Core Math Communication Data Analytics AI

#pragma acc data copy(x,y) {
...
#pragma acc parallel loop
for (i=0; i<n; i++) {

y[i] += a * x[i];
}
...
}

#pragma omp target data map(x,y) {
...
#pragma omp target teams loop
for (i=0; i<n; i++) {

y[i] += a * x[i];
}
...
}

Incremental Portable Optimization

Quantum

https://developer.nvidia.com/nvidia-hpc-sdk-downloads

https://developer.nvidia.com/nvidia-hpc-sdk-downloads


WHAT IS THE GPU GEARBOX?

The GPU gearbox is a mental model for thinking about 
programming models, to deliver the best performance at 
different levels of developer effort and specialization.

Think about torque, not speed…

First Gear

ISO standard parallelism: Easiest to adopt.  Maximum portability.  
Good performance in a subset of use cases.

Second Gear

Performance libraries: Peak performance for supported features, 
which include a wide range of common patterns in linear 
algebra, machine learning and data analysis.

Third Gear

Directives and Pragmas: Easy to adopt.  Good portability.  Great 
performance in many use cases.

Fourth Gear

CUDA languages: Exposes full hardware capability and enables 
maximum performance.  Supported on all NVIDIA GPUs.

https://commons.wikimedia.org/wiki/File:Ferrari_F355_Spider_-_Flickr_-_The_Car_Spy_(16).jpg

https://commons.wikimedia.org/wiki/File:Ferrari_F355_Spider_-_Flickr_-_The_Car_Spy_(16).jpg
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AND THEN THERE ARE FRAMEWORKS

▪ Frameworks try to abstract the hardware from the application code

▪ Kokkos is one such abstraction

▪ Frameworks can be difficult to retrofit into your application. 

▪ Does the framework manage the data for you?

▪ Does the framework manage MPI for you, ghost exchanges?

▪ Does the framework manage the discretization for you?

▪ Frameworks can disappear, it could have been a PhD project

▪ Frameworks can make your life much easier

▪ But it can be hard to work outside what they intended you to do

▪ Frameworks can hide complexity

▪ But can also inhibit performance

▪ Frameworks can let you code to any backend 

▪ Develop with CPU threads

▪ Deploy on GPUs

▪ By this definition, the C++ stdpar is a framework
Kokkos::View<double*> x(“x”,n), y(“y”,n);
Kokkos::parallel_for(n,KOKKOS_LAMBDA(int i)

{ y(i) += a*x(i); }
);



SHIFTING THROUGH THE GEARS
Experiments with linear algebra primitives

MATRIX MULTIPLICATION
Optimize everything…

MATRIX TRANSPOSE
Memory bandwidth, shared memory, and coalescing

VECTOR ADDITION
Memory bandwidth

https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/ https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/https://developer.nvidia.com/blog/even-easier-introduction-cuda/

https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/blog/even-easier-introduction-cuda/


Vector Addition: Z = a * X + Y

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

OpenACC C (loop)

OpenMP C

CUBLAS C++

CUDA C++

OpenACC C++ (loop)

OpenMP C++

C++ StdPar

CUDA Fortran

OpenACC Fortran (kernels)

OpenACC Fortran (loop)

OpenMP Fortran

Fortran StdPar

CuPy

CUDA Python

% of CUDA C++



Matrix Transpose: B = B + A^T

40% 50% 60% 70% 80% 90% 100%

OpenACC C (kernels)

OpenACC C (loop)

OpenMP C

CUBLAS C++

CUDA C++

OpenACC C++ (loop)

OpenMP C++

C++ StdPar

CUDA Fortran

Fortran StdPar (intrinsic)

OpenACC Fortran (kernels)

OpenACC Fortran (loop)

OpenMP Fortran

Fortran StdPar (loops)

CuPy

CUDA Python

% of CUBLAS (DGEAM)



Matrix Multiplication: C = C + A * B

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

OpenACC C (kernels)

OpenACC C (loop)

OpenMP C

CUBLAS C++

CUTENSOR C++

OpenACC C++ (loop)

OpenMP C++

C++ StdPar

Fortran StdPar (intrinsic)

OpenACC Fortran (kernels)

OpenACC Fortran (loop)

OpenMP Fortran

Fortran StdPar (loops)

CuPy

% of CUBLAS (DGEMM)

P1673R3



WHAT PARADIGM SHOULD YOU USE

Well, it depends

For a lot of applications standard languages work very well

Specific kernels require special attention 

Libraries - Matrix math, FFTs, tensor contractions and others

Using a mixture of different paradigms can give you the best of all worlds



NOW THAT YOU KNOW WAYS TO USE GPUS
WHAT ARE THE KEYS TO USING THEM 



IT’S ALL ABOUT THE MEMORY
FLOPS are free

Simple definitions

FLOPS – Floating Point Operations Per Second

Memory Latency – Time between memory request and arrival

Memory Bandwidth – How much memory comes per second

Shared Memory – Local fast shared memory to a SM

Compute Intensity – FLOPS/BYTE



THE NVIDIA AMPERE GPU ARCHITECTURE
These are the resources that are available

SMs 108

Total threads 221,184

Peak FP32 TFLOP/s 19.5

Peak FP64 TFLOP/s (non-tensor) 9.7

Peak FP64 TFLOP/s (tensor) 19.5

Tensor Core Precision
FP64, TF32, BF16, 

FP16, I8, I4, B1

Shared Memory per SM 160 kB

L2 Cache Size 40960 kB

Memory Bandwidth 1555 GB/sec

GPU Boost Clock 1410 MHz

NVLink Interconnect 600 GB/sec

ARITHMETIC INTENSITY=9.7/1.555=6.25
Well, we want doubles, 8x!! 

We need to use every load 50x
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NVIDIA A100 Intel Xeon 8280 AMD Rome 7742

Peak FP64 GigaFLOPs 9700 2190 2300

Memory B/W (GB/sec) 1555 131 204

Compute Intensity 50 134 90

HBM HBM HBM

GPU CPU

DRAM

NOT JUST A GPU ISSUE



THERE IS STILL A LOT OF MEMORY BANDWIDTH

Depending on how you access memory 
will greatly affect bandwidth!

Why?

Your milage will very

111 GB/sec

1418 GB/sec

HBM page size = 1kB

Burst size = 64 Bytes

724 GB/sec



Read address: 001100010010011110100001101101110011

Activate row and pull data into sense amplifiers

This destroys data in the row as capacitors drain
1



Read address: 001100010010011110100001101101110011

Activate row and pull data into sense amplifiers

This destroys data in the row as capacitors drain
1

Read from page held in amplifiers at column index

This does not destroy data in the amplifiers
2



Read address: 001100010010011110100001101101110100

Activate row and pull data into sense amplifiers

This destroys data in the row as capacitors drain
1

Read from page held in amplifiers at column index

This does not destroy data in the amplifiers
2

May make repeated reads from the same page

at different column indexes
3



Read address: 001100010010011110100001101101110100

Activate row and pull data into sense amplifiers

This destroys data in the row as capacitors drain
1

Read from page held in amplifiers at column index

This does not destroy data in the amplifiers
2

May make repeated reads from the same page

“Burst” reads load multiple columns at a time
3



Read address: 001100010010011101100001101101110011

Activate row and pull data into sense amplifiers

This destroys data in the row as capacitors drain
1

Read from page held in amplifiers at column index

This does not destroy data in the amplifiers
2

May make repeated reads from the same page

“Burst” reads load multiple columns at a time
3

Before a new page is fetched, old row must be

written back because data was destroyed
4



SO WHAT DOES THIS ALL MEAN?

▪ We’d expect a significant performance difference
for coalesced vs. scattered reads

▪ On A100, memory bandwidth for widely-spaced reads is

= 8% of peak bandwidth
111

1418

That’s 1/13th of

peak bandwidth!

111 GB/sec

1418 GB/sec

HBM page size = 1kB

Burst size = 64 Bytes

724 GB/sec

ARITHMETIC INTENSITY=9.7/0.111=88
We need to use every load 700x



DATA ACCESS PATTERNS REALLY MATTER

Row-major array layout

13x slower than 

column access

Row read latency

TRAS = TRP + TRDC + CL

for(x=0; x<N; x++) {

for(y=0; y<M; y++) {

load(array[y][x]);

}

}

Column-major array traversal

for(y=0; y<M; y++) {

for(x=0; x<N; x++) {

load(array[y][x]);

}

}

Row-major array traversal

Column read latency CL



SO WHAT WENT WRONG?
Matrix Multiplication: C = C + A * B

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

OpenACC C (kernels)

OpenACC C (loop)

OpenMP C

CUBLAS C++

CUTENSOR C++

OpenACC C++ (loop)

OpenMP C++

C++ StdPar

Fortran StdPar (intrinsic)

OpenACC Fortran (kernels)

OpenACC Fortran (loop)

OpenMP Fortran

Fortran StdPar (loops)

CuPy

% of CUBLAS (DGEMM)

P1673R3



IT IS ABOUT MEMORY ACCESS

▪ The simple FORTRAN stdpar code is listed 

▪ The B matrix has good memory access

▪ The A matrix has strided access

▪ What the cuBLAS library does for a matrix multiply

▪ Divides up the A and B matrix into blocks

▪ Loads these blocks into shared memory

▪ Load from shared memory into registers

▪ Perform unrolled math using registers

▪ Store results

▪ Loads are all handled asynchronously 

▪ Modern versions use tensor cores for the math 

! Fortran standard parallelism

! Loop version

do concurrent (j=1:order, i=1:order) local(T)

T = C(i,j)

do concurrent (p=1:order) ! Implicit reduction

T = T + A(i,p) * B(p,j)

enddo

C(i,j) = T

enddo



WHAT DO WE KNOW SO FAR

GPU Programming is easy, just…

Load as little data as possible 

Access the data so it is adjacent for optimal bandwidth

Reuse the data a lot of times

i.e., Perform dense matrix-matrix multiplies

But my program isn’t a matrix-matrix multiply

My mesh is unstructured or my data access is random



MEMORY LATENCY

Latency – Time between your first request and the data arrives

Bandwidth – How much data you get in a given time once the transfer starts

Low Latency (left)

Or

High bandwidth (right)

GPUs have very high bandwidth compared to CPUs ( 1.6GB/s vs 0.2 GB/s )

But also have higher latency than CPUs ( 400ns vs 100ns )



WORKING WITH HIGH LATENCY
Over-Subscription and Concurrency 

▪ Remember that scheduler I mentioned???  It schedules work on an SM

▪ Fits as many blocks as it can based on resources.  If it schedules 2048 threads occupancy is at 100%

▪ If a chunk of threads (warp) gets stalled while waiting for memory, another gets swapped in who is ready

▪ What can you do?

▪ Schedule multiple types of work

▪ Fetch data and FLOPS

▪ Reduce resources

▪ Registers and shared memory

▪ It is always a good idea to 

▪ Have multiple blocks on an SM

▪ Ideally a mix of work

▪ Use your shared memory wisely

A100 SM Resources

2048 Max threads per SM

32 Max blocks per SM

65,536 Total registers per SM

160 kB Total shared memory in SM

32 Threads per warp

4 Concurrent warps active

64 FP32 cores per SM

32 FP64 cores per SM

192 kB Max L1 cache size

90 GB/sec Load bandwidth per SM

1410 MHz GPU Boost Clock



SUMMARY



IN SUMMARY

▪ Computing has changed a lot in the last 50 years, and it will continue to change

▪ As computing has evolved, complexity has grown, and the tools have evolved to make this tractable

▪ GPUs are here with us, they are not going anywhere

▪ Programming GPUs (and CPUs really) one needs to focus on the memory access and use patterns

▪ Think about memory access patterns when you design your algorithm

▪ When choosing a programming model, one needs to balance flexibility with performance 

▪ Use libraries when possible, the designers of these libraries focus on the details I’d rather ignore

▪ Profile your code often throughout the development process, optimize accordingly
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