

1

Some peculiarities of spin-adaptation in quantum chemistry: the impact of orbital ordering aka Compact description of strongly correlated spin systems

Giovanni Li Manni, Werner Dobrautz, Pablo Lopez Rios, Nikolay Bogdanov, Ali Alavi

Max Planck Institute for Solid State Research Stuttgart

January 2024

Polynuclear 3d transition metal complexes

There are numerous important biological catalysts whose active sites contain **multiple magnetic centres (eg Fe,Mn,Co ions), typically arranged in a cubane configuration with O or S bridging ligands.**

There molecules are implicated in **electron transport** and catalysis of **spin-forbidden reactions** (water splitting). Others are involved in nitrogen splitting (nitrogenase)

Challenges

- Although the magnetic centres are high-spin (for example S=5/2 in the case of Fe(III)), the overall spin of is low. These are examples of extreme multi-reference systems.
- There is typically strong anti-ferromagnetic coupling between the magnetic sites, induced by various exchange and super-exchange mechanisms, which involve the ligands
- The cubane structure implies **frustration** in the magnetic interactions.
- There is a complex low-energy spectrum, with small gaps between states with the same low spin, and also between different spins. These are hallmarks of strong electron correlation.
- The structures of the molecules are distorted, indicative of Jahn-Teller effects. Nuclear dynamics is quite possibly non-adiabatic.

What do we want to understand?

- There are two levels of description we are after:
- On the one hand, a detailed ab initio description, starting from the Schrödinger equation, would seem desirable, but this is not sufficient for such complex systems. We might get accurate numbers, but what about understanding?
- Phenomenologically, these systems are described by spin models, such as Heisenberg models and extensions

$$\hat{H}_{Heisenberg+} = \sum_{ij} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + \sum_{ijkl} K_{ijkl} (\mathbf{S}_i \cdot \mathbf{S}_j) (\mathbf{S}_k \cdot \mathbf{S}_l)$$

The exchange parameters J_{ij} , K_{ijkl} are to be obtained from ab initio calculations The typical energy scale of the J are on the order of a few tens meV

Spin degeneracy

- Low-spin open-shell systems represent extreme examples of multi-reference wave functions, with a high degree of spindegeneracy
- The multi-reference character of a wave function can be assessed via the so-called van-Vleck-Sherman formula, that gives the number of open-shell spin-eigenfunctions (with n_o open-shell orbitals and spin S) that can be constructed

$$g(n_o, S) = \begin{pmatrix} n_o \\ n_o/2 - S \end{pmatrix} - \begin{pmatrix} n_o \\ n_o/2 - S - 1 \end{pmatrix}.$$

In a system with n_O open-shell electrons, the ground-state wavefunction with spin *S* consists of $g(n_O, S)$ leading CSFs

The expected spin-degeneracy in cubanes from the Van-Vleck-Sherman Formula

For a Fe(III) cubane, there are 20 open-shell electrons

6

Heisenberg Spin Chain

The two S=1/2, Ms=1/2 CSFs are:

$$|uud\rangle = \frac{1}{\sqrt{6}} (2|\uparrow\uparrow\downarrow\rangle - |(\uparrow\downarrow+\downarrow\uparrow)\uparrow\rangle)$$
$$|udu\rangle = \frac{1}{\sqrt{2}} |(\uparrow\downarrow-\downarrow\uparrow)\uparrow\rangle$$

Heisenberg Spin Chain

It is implicity assumed that the spins are coupled in "natural order"

$$|u_1 u_2 d_3\rangle = \frac{1}{\sqrt{6}} \left(2 |\uparrow_1 \uparrow_2 \downarrow_3 \rangle - |(\uparrow_1 \downarrow_2 + \downarrow_1 \uparrow_2) \uparrow_3 \rangle \right)$$
$$|u_1 d_2 u_3\rangle = \frac{1}{\sqrt{2}} |(\uparrow_1 \downarrow_2 - \downarrow_1 \uparrow_2) \uparrow_3 \rangle$$

"Natural order"

Consider the action of a permutation operator

$$P_{23} | u_1 u_2 d_3 \rangle = | u_1 u_3 d_2 \rangle$$

$$= \frac{1}{\sqrt{6}} \left(2 | \uparrow_1 \uparrow_3 \downarrow_2 \rangle - | (\uparrow_1 \downarrow_3 + \downarrow_1 \uparrow_3) \uparrow_2 \rangle \right)$$

$$= -\frac{1}{2} | u_1 u_2 d_3 \rangle + \frac{\sqrt{3}}{2} | u_1 d_2 u_3 \rangle$$

$$P_{23} | u_1 d_2 u_3 \rangle = | u_1 d_3 u_2 \rangle$$

$$= \frac{\sqrt{3}}{2} | u_1 u_2 d_3 \rangle + \frac{1}{2} | u_1 d_2 u_3 \rangle$$

The action of permutation operators is to generate unitary transformations of the CSFs!

Why is this interesting?

$$\hat{H} = J(\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 + \hat{\mathbf{S}}_2 \cdot \hat{\mathbf{S}}_3)$$

$$H^{123} = - \begin{pmatrix} \frac{5}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix},$$

Expressed in terms of the "132" CSF basis

$$H^{132} = \begin{pmatrix} -\frac{3}{2} & 0\\ 0 & -\frac{1}{2} \end{pmatrix}.$$

i.e. through a simple process of re-ordering we have diagonalised the Hamiltonian!

What happens in longer chains?

Order Ref. CSF F		CI coet	CI coefficient [%]	
		Ref. CSF	PBC	OBC
Natural	1-2-3-4-5-6	$ u_1d_2u_3d_4u_5d_6 angle$	77.9	92.2
Bipartite	1-3-5-2-4-6	$ u_1u_3u_5d_2d_4d_6 angle$	95.7	89.9
Compact	1 - 3 - 2 - 5 - 4 - 6	$ u_1u_3d_2u_5d_4d_6 angle$	97.1	94.7
SDs Néel state		$\left \uparrow_{1}\downarrow_{2}\uparrow_{3}\downarrow_{4}\uparrow_{5}\downarrow_{6}\right\rangle$	47.9	44.9

TABLE I. 6-site orderings and leading CSF weights.

Propagating a doublet "meta-spin" down the chain

FIG. 2. Cumulative doublet coupling of "meta-spin- $\frac{1}{2}$ " in the most compact order.

$$\psi_{i\sigma} = C^{uud}_{\sigma} \psi_{(i-2)\sigma} a^{\dagger}_{(i-1)\sigma} a^{\dagger}_{i\bar{\sigma}} + C^{udu}_{\sigma} \left(\psi_{(i-2)\sigma} a^{\dagger}_{(i-1)\bar{\sigma}} + \psi_{(i-2)\bar{\sigma}} a^{\dagger}_{(i-1)\sigma} \right) a^{\dagger}_{i\sigma}$$

Dobrautz et al, Phys Rev B 105, 195123 (2022)

Spin-Spin correlation functions

FIG. 5. (a) $\langle S_1^z \cdot S_x^z \rangle$, (b) $\langle S_5^z \cdot S_x^z \rangle$, and (c) $\langle S_{10}^z \cdot S_x^z \rangle$ exact and single-CSF spin-spin correlation functions for the 10-site chain with OBC.

Development of spin-adapted GUGA-FCIQMC

Dobrautz, Smart, Alavi, J. Chem. Phys. 151, 094104 (2019)

Spin adaptation is exact imposition of $[\hat{H}, \hat{S}^2] = 0$

$$\hat{H} = \sum_{ij} t_{ij} \hat{E}_{ij} + \frac{1}{2} \sum_{ij,kl} V_{ij,kl} \hat{e}_{ij,kl}.$$

Spin-summed Excitation operators:

$$\sum_{\sigma} a_{i\sigma}^{\dagger} a_{j\sigma} = \hat{E}_{ij}$$

$$\sum_{\sigma\tau} a_{i\sigma}^{\dagger} a_{k\tau}^{\dagger} a_{l\tau} a_{j\sigma} = \hat{E}_{ij} \hat{E}_{kl} - \delta_{jk} \hat{E}_{il} = \hat{e}_{ij,kl}$$

$$[\hat{E}_{ij}, \hat{E}_{kl}] = \delta_{jk} \,\hat{E}_{il} - \delta_{il} \,\hat{E}_{kj}$$

...which satisfy the commutation relations of the generators of the unitary group U(n)

Moshinsky 1968, Paldus 1974

Acting with this H enables one to dynamically preserve SU(2) symmetry, i.e. the spin, of the stochastically evolving wave function.

Extremely powerful approach for systems with small spin gaps - typical of many strongly correlated systems.

Block diagonalisation of UGA-represented Hamiltonian using appropriately ordered orbitals

UGA Hamiltonian matrix of the S=0 sector of a model of 4 separated N atoms (S_A =3/2) in an expanded tetrahedral geometry

 $p_x^A p_x^B p_x^C p_x^D p_y^A \dots p_z^D$

 $p_x^A p_y^A p_z^A p_z^B p_y^B p_z^B \dots p_z^D$

[Fe(III)₄S₄] complexes

Electron transfer catalysts in biological systems

[Fe(III)₄S₄] complexes

Electron transfer catalysts in biological systems, but also geometrically frustrated quantum antiferromagnets

Correlating 3d electrons and orbitals only, number of determinants=
$$\binom{20}{10}^2 = 3 \times 10^{10}$$

Including Sulfur 3p electrons and orbitals= $\binom{32}{22}^2 = 4 \times 10^{15}$

18

Application of GUGA-FCIQMC to [Fe(III)4S4]

Li Manni et al, J. Phys. Chem. A, 125, 4727-4740 (2021)

6 lowest energy singlet states in complete-active-spaces of CAS(20e,20o) [Fe 3d only] and CAS(44e,32o) [+S 3p]

With the appropriate ordering of the orbitals, sorted by magnetic centres (ABCD), the S=0 ground state and 5th excited state turn out to be single reference!

Spin-branching diagram for the 4 Fe(III) centres

20

A (distorted) tetrahedral (S=5/2) Heisenberg spin system

$$\begin{aligned} \hat{\mathcal{H}}_{\text{mod}} &= J_{2B}(\hat{\mathbf{S}}_{\mathbf{A}} \cdot \hat{\mathbf{S}}_{\mathbf{B}} + \hat{\mathbf{S}}_{\mathbf{C}} \cdot \hat{\mathbf{S}}_{\mathbf{D}}) \\ &+ J_{4B}(\hat{\mathbf{S}}_{\mathbf{A}} \cdot \hat{\mathbf{S}}_{\mathbf{D}} + \hat{\mathbf{S}}_{\mathbf{B}} \cdot \hat{\mathbf{S}}_{\mathbf{C}} + \hat{\mathbf{S}}_{\mathbf{A}} \cdot \hat{\mathbf{S}}_{\mathbf{C}} + \hat{\mathbf{S}}_{\mathbf{B}} \cdot \hat{\mathbf{S}}_{\mathbf{D}}) \end{aligned}$$

In case of the perfect tetrahedron $J_{4B} = J_{2B}$, the S=0 spin sector spans $A_1 \oplus A_2 \oplus 2E$, i.e. is six-fold degenerate (partly accidental).

The presence of the 2*E* states means that Jahn-Teller distortions with symmetry $(E \otimes E)_+ = A_1 \oplus E$ can lower symmetry, break the degeneracy, and lower the energy.

Computed Heisenberg exchange constants: comparison with experiment

Table 3. Parameters $[cm^{-1}]$ of the Model Hamiltonian (eq 8) Extracted from the *Ab Initio* Calculations for Compounds (1) and (2), and the Experimentally Obtained for (2) from Ref 16

	Compound (1)		Compound (2)		
	(20e,20o)	(44e,32o)	(20e,20o)	(44e,32o)	Exp. ¹⁶
$J_{4\mathrm{B}}$	55.5	90.3	41.5	72.7	70
J _{2B}	32.0	49.8	58.9	87.3	82
J4B – J2B	23.5	40.5	-17.5	-14.6	-12

Spin ladder of [Fe(III)4S4]

The effect of CASSCF Dobrautz et al, JCTC, **17**, 5684 (2021)

$$\hat{H} = \sum_{ij} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + \sum_{ij} K_{ij} (\mathbf{S}_i \cdot \mathbf{S}_j)^2$$

Conclusions and future work

- Orbital re-ordering proves to be a very powerful trick to induce compactness into spin-adapted wavefunction expansions
- Many previously considered multi-reference systems can be rendered single-reference
- Extension of these methods beyond active-space calculations remains challenging
- Transcorrelation framework, which incorporates real-space Jastrow functions, to capture out-side of active correlation is being developed.

Electronic Structure Theory Group@ MPIFKF

