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The problem

• Finding the ground state of many-body quantum systems is
hard. [

− ~2

2m
∇2 + V (R)

]
ψn (R) = Enψn (R)

• Analytical solutions for systems beyond the Hydrogen atom
are rare.
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Curse of dimensionality

Straight forward numerically accurate approximations suffer from
impractical scaling.

https://www.i2tutorials.com/what-do-you-mean-by-curse-of-dimensionality-what-are-the-different-ways-to-deal-
with-it/

Convoluted approximations are required!

https://www.i2tutorials.com/what-do-you-mean-by-curse-of-dimensionality-what-are-the-different-ways-to-deal-with-it/
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The variational principle
We can find for the ground state by searching for the global
minimum of the energy. Lower is always better.

E (ψθ (R)) =

〈
ψθ|Ĥ|ψθ

〉
〈ψθ|ψθ〉

=
∑
n

|cn|2 En ≥ E0

Global minimum
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Optimization
Global optimization is also hard. Derivatives with respect to all
parameters and spatial coordinates are needed.

∇2ψθ (R)

θ → θ − η∇θE (ψθ (R))

Local minima

Global minimum
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Imaginary Time Propagation / Stochastic Reconfiguration1

Imaginary time propagation bypasses optimization issues but is
computationally impractical for large ansatzes with existing
methods.

ψ (R, τ) =
∞∑
n=0

cnϕn(R)e−
1
~Enτ τ→∞−−−−−−−−−→

E0≤E1≤...≤En

ψ (R, τ) ∝ ϕ0(R)

Global minimum

Imaginary time propagation

θα → θα − η
∑
β

S−1
αβ f β

1S. Sorella, Phys. Rev. B 71, 241103 (2005).
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The Stochastic Representation2

Given a tractable ansatz ψ
(0)
s , we should

be able to:

• Select a set of sample coordinates
Ri .

• Obtain the set of numbers
ψ

(1)
s (Ri ) ≡ e−τ Ĥψ

(0)
s (Ri ), so we

have pairs
{

Ri , ψ
(1)
s (Ri )

}
.

• Interpolate over the samples to
result in a new, propagated

tractable ansatz ψ
(1)
s (R).

ψ(0)
s

2H. Atanasova, L. Bernheimer, and G. Cohen, Nat Commun 14, 1 (2023).
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ψ

(1)
s (Ri ) ≡ e−τ Ĥψ

(0)
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have pairs
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Ri , ψ
(1)
s (Ri )

}
.

• Interpolate over the samples to
result in a new, propagated

tractable ansatz ψ
(1)
s (R).

ψ(1)
s ( ) =

Ze−τĤ ψ(0)
s ( )Ri
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The Stochastic Representation2

Given a tractable ansatz ψ
(0)
s , we should

be able to:

• Select a set of sample coordinates
Ri .

• Obtain the set of numbers
ψ

(1)
s (Ri ) ≡ e−τ Ĥψ

(0)
s (Ri ), so we

have pairs
{

Ri , ψ
(1)
s (Ri )

}
.

• Interpolate over the samples to
result in a new, propagated

tractable ansatz ψ
(1)
s (R).

τĤ ψ(0)
sψ(1)

s

ψ(0)
s

2H. Atanasova, L. Bernheimer, and G. Cohen, Nat Commun 14, 1 (2023).
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The Stochastic Representation

Repeating this will eventually result in the wavefunction at long
imaginary time, i.e., the ground state. Consequently, the
optimization problem transitions into a supervised regression task.
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Previous Works

Similar ideas were devised before us:

• D. Kochkov and B. K. Clark, arXiv:1811.12423 (2018).

• I. L. Gutiérrez and C. B. Mendl, Quantum 6, 627 (2022).

• J. Gacon, J. Nys, R. Rossi, S. Woerner, and G. Carleo,
arXiv:2303.12839 (2023).
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Path Integration

• Simplest way: Euler method, e−∆τ Ĥ
~ ' 1−∆τ Ĥ

~ . Requires

taking spatial derivatives, e.g. − ~2

2mO2
i ψ

(0)
s (Ri ).

• Another way: perform path integration. No derivatives
needed!

e−τ
Ĥ
~ ψ (R0) = lim

N→∞

(
mN

2πτ~

)Nd
2

×
∫

(Rd)
N

exp

−1

~

N∑
j=1

ε

[
m

2

∣∣∣∣Rj − Rj−1

ε

∣∣∣∣2 + V (Rj−1)

]
× ψ (RN) dR1dR2 · · · dRN

ε =
τ

N
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Path Integration
• Path integration for long times is limited by sign problems,

but shorter times can be evaluated approximately, N = 1
(∆τ ≡ ε).

e−∆τ Ĥ
~ ψ(R0)'( m

2π∆τ~)
d
2
∫
Rd exp{− 1

~S
L
E(R0,RN ,∆τ)}×ψ(RN)dRN

• Can be carried out with Monte Carlo!
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Regression

J (θ) =
1

M

M∑
i=1

(
ψθ (π̄iRi )− σ (π̄i ) e

−∆τ Ĥ/~ψ (Ri )
)2

∣∣∣e−∆τ Ĥ/~ψ (Ri )
∣∣∣2 + ε

.

https://onlinelibrary.wiley.com/doi/10.1002/adts.202000269
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Exchange Symmetry of Identical Particles

The spatial wavefunction is (anti)symmetric to exchange of
identical bosons (fermions).

• Bosons are relatively easy to treat due to the lack of nodes
• Fermions are hard - more sign problems
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Fermionic Symmetry

Fermionic symmetry is usually enforced via Slater determinants,

ψ (r1, r2, . . . , rN) =
1√
N!

∣∣∣∣∣∣∣∣∣
χ1 (r1) χ2 (r1) · · · χN (r1)
χ1 (r2) χ2 (r2) · · · χN (r2)

...
...

. . .
...

χ1 (rN) χ2 (rN) · · · χN (rN)

∣∣∣∣∣∣∣∣∣
The time complexity for computing a determinant is of the order
O
(
N3
)

(or O
(
N2
)

for Vandermonde ansatzes).
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Inexpensive Symmetry Enforcement

To enforce symmetry of N particles, order their coordinates
lexicographically and consider the sign change in the corresponding
space subset. 3

ri < rj if xi < xj , or xi = xj and yi < yj or xi = xj and so on.

ψ ({r1, . . . , rN}) = σ (π̄)ψ 1
N!

({
rπ̄(1), . . . , rπ̄(N)

})
For example, 2 fermions in a 1D box:

0.0 0.2 0.4 0.6 0.8 1.0
x1 [L]

0.0

0.2

0.4

0.6

0.8

1.0

x 2
 [L

]

0.7 0.3 0.0 0.3 0.7
x [L]

0.04

0.02

0.00

0.02

0.04

3M. Hutter, ArXiv:2007.15298 [Quant-Ph] (2020).
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Inexpensive Symmetry Enforcement

To enforce symmetry of N particles, order their coordinates
lexicographically and consider the sign change in the corresponding
space subset. 3

ri < rj if xi < xj , or xi = xj and yi < yj or xi = xj and so on.

ψ ({r1, . . . , rN}) = σ (π̄)ψ 1
N!

({
rπ̄(1), . . . , rπ̄(N)

})
Using quicksort lowers the symmetrization complexity to
O (N logN), with a small prefactor!

3M. Hutter, ArXiv:2007.15298 [Quant-Ph] (2020).
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Inexpensive Symmetry Enforcement

Diverging derivatives are treatable only via the path integral
approach!

7 73 3
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Energy estimation

A non-variational energy estimation can be extracted immediately.

• At long imaginary times we can write

e−∆τ Ĥ
~ ϕ0 (R) = e−∆τ

E0
~ ϕ0 (R)

E0 = −~
ln

(
e−∆τ Ĥ

~ ϕ0(R)
ϕ0(R)

)
∆τ

• At each step we check if the ”decay” estimation has converged

Edecay (ψ) = −~
ln

(
e−∆τ Ĥ

~ ψ(Ri)
ψ(Ri)

)
∆τ
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Non-interacting fermions in a 2D harmonic trap

Ĥ =
1

2m
∇2 +

1

2
mω2

∑
i

r2
i
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Spin polarized interacting fermions in a 2D harmonic trap

Ĥ =
1

2m
∇2 +

1

2
mω2

∑
i

r2
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∑
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Fidelity

The quality of the regression decreases slower than exponentially.
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Wigner crystallization for N = 6

We shed light on the different transitions to a Wigner molecule of
the ground-state and spin-polarized cases.
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Summary

• SRW is an alternative to variational Monte Carlo that
enables more robust optimization with scalable imaginary
time propagation.
• Path integration obviates the need for spatial derivatives,

enabling utilization of non-differentiable or even discontinuous
ansatzes.
• Non-differentiable ansatzes are helpful in machine learning,

and enable highly efficient (anti)symmetry enforcement
by lexicographic sorting of coordinates.
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Thank You!



31/30

Bonus A - linear euclidean action

RL (t) =
(

1− t

∆τ

)
R0 +

t

∆τ
RN

SL
E(R0,RN ,∆τ) =

∫ ∆τ

0

[
m

2

∣∣∣∣RN − R0

∆τ

∣∣∣∣2 + V
(

RL (t)
)]

dt

=
m

2∆τ
|RN − R0|2 +

∫ ∆τ

0
V
(

RL (t)
)
dt

e−Ĥ∆τ/~ψ (R0) '
( m

2π∆τ~

)d/2 1

ns

×
∑

Ri∼Nµ,σ2

exp
{
−1

~S
L
E (R0,Ri ,∆τ)

}
Nµ,σ2 (Ri )

ψ (Ri )
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Bonus B - derivative-free variational energy estimation
We can avoid the differentiation of the wavefunction by
convoluting it with a Gaussian.

ψ (R)→ ψ̃ (R) = ψ (R) ∗ N0,σ2 (R)

=

∫
Rd

ψ
(
R− k′

)
N0,σ2

(
k′
)
dk′

E =

〈
ψ̃
∣∣∣Ĥ∣∣∣ ψ̃〉〈
ψ̃
∣∣∣ψ̃〉 '

∑
R,k′,k′′ A (R, k′, k′′)∑
R,k′,k′′ B (R, k′, k′′)

≥ E0

A
(
R, k′, k′′

)
≡ B

(
R, k′, k′′

)
× R′′2 − σ2 + σ4V (R)

σ4

B
(
R, k′, k′′

)
≡ ψ∗ (R− k′)ψ (R− k′′)

|ψ (R)|2
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Bonus C - 2D harmonic oscillator energy levels

https://www.researchgate.net/figure/energy-levels-and-number-of-electrons-for-shell-closings-of-the-2d-harmonic-
oscillator fig7 306243994

https://www.researchgate.net/figure/energy-levels-and-number-of-electrons-for-shell-closings-of-the-2d-harmonic-oscillator_fig7_306243994
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Bonus D - Scaling results
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Bonus E - Runtime scaling

0 2 4 6 8 10
𝑁

1.00

1.25

1.50

1.75

2.00

2.25
𝑡/

𝑡 0 ∼ 0.12𝑁

1


	Introduction
	The Stochastic Representation & Path Integration
	Methods
	Symmetry Enforcement
	Energy Estimation

	Results
	Appendix

