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The problem

® Finding the ground state of many-body quantum systems is
hard.

h2
AN v + V(R) Yn (R) = Enin (R)

2m

® Analytical solutions for systems beyond the Hydrogen atom
are rare.
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Curse of dimensionality

Straight forward numerically accurate approximations suffer from
impractical scaling.

https://www.i2tutorials.com /what-do-you-mean-by-curse-of-dimensionality-what-are-the-different-ways-to-deal-
with-it/

Convoluted approximations are required!
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The variational principle
We can find for the ground state by searching for the global
minimum of the energy. Lower is always better.

ol Flo
£ (o (R)) = <<; r¢90> S el B> B

n

Global minimum

£(ye(r))
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Optimization
Global optimization is also hard. Derivatives with respect to all
parameters and spatial coordinates are needed.

V2¢e (R)

0 — 0 —nVe& (Vg (R))

Local minima

Global minimum
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Imaginary Time Propagation / Stochastic Reconfiguration?

Imaginary time propagation bypasses optimization issues but is
computationally impractical for large ansatzes with existing
methods.

e 1
R,7)= on(R)e nErm — T7°0 R R
Y (R, 7) ;C@()eh MI/J( ,7) < wo(R)

Imaginary time propagation

Global minimum

Elys(r))
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!S. Sorella, Phys. Rev. B 71, 241103 (2005). 8/30
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The Stochastic Representation?

Given a tractable ansatz ¢§°), we should
be able to:
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2H. Atanasova, L. Bernheimer, and G. Cohen, Nat Commun 14, 1 (2023).
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The Stochastic Representation?

Given a tractable ansatz ¢§°), we should
be able to:

H (0)
® Select a set of sample coordinates v | =

R;

2H. Atanasova, L. Bernheimer, and G. Cohen, Nat Commun 14, 1 (2023). 10/30
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The Stochastic Representation?

Given a tractable ansatz ¢§0), we should

be able to:
® Select a set of sample coordinates g0 ‘
R;. | | |
. W R) = ‘
° Obltaln the set of numbers 2= 40 ) ‘
1p£ ) (R) = e_Tngo) (Ri), so we | l ‘ [
have pairs {R,-, gl)(R;)}. i | .

2H. Atanasova, L. Bernheimer, and G. Cohen, Nat Commun 14, 1 (2023). 10/30
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The Stochastic Representation?

Given a tractable ansatz ¢§0), we should
be able to:

® Select a set of sample coordinates
R;.

® Obtain the set of numbers
wgl) (R) = e_Tngo) (Ri), so we
have pairs {R,-, §1) (R,-)}.

® |nterpolate over the samples to
result in a new, propagated
tractable ansatz 1/)9) (R).

0)
o

(1) ¢ e—rﬁ (0)
WS WS e
—o—so -

2H. Atanasova, L. Bernheimer, and G. Cohen, Nat Commun 14, 1 (2023).
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The Stochastic Representation

Repeating this will eventually result in the wavefunction at long
imaginary time, i.e., the ground state. Consequently, the
optimization problem transitions into a supervised regression task.
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Previous Works

Similar ideas were devised before us:
¢ D. Kochkov and B. K. Clark, arXiv:1811.12423 (2018).
e |. L. Gutiérrez and C. B. Mendl, Quantum 6, 627 (2022).

® J. Gacon, J. Nys, R. Rossi, S. Woerner, and G. Carleo,
arXiv:2303.12839 (2023).
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Path Integration

® Simplest way: Euler method, e BT ~ 1 - AT%. Requires
taking spatial derivatives, e.g. —%v,?zpﬁo) (Ry).

® Another way: perform path integration. No derivatives
needed!

Nd
B L mN '\ 2
e "n(Rg) = lim <27r7h)

N—o0

Ri—R;_1|?
== +V(R,-_1>]
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Path Integration
® Path integration for long times is limited by sign problems,
but shorter times can be evaluated approximately, N =1

(AT =¢).
A d
e AR (Ro) (5227 )2 fua exp{— L SL(Ro,Ry,AT) } xth(Ry)dRy

® Can be carried out with Monte Carlo!
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Regression

(40 (7iR) — o (77) =270 (R))’

’e‘AT’:’/ﬁw (R,-)‘2 +€

1 M
J(0)=1>.
i=1

input hidden layers output
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https:/ /onlinelibrary.wiley.com/doi/10.1002/adts.202000269
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Exchange Symmetry of Identical Particles

The spatial wavefunction is (anti)symmetric to exchange of
identical bosons (fermions).

® Bosons are relatively easy to treat due to the lack of nodes
® Fermions are hard - more sign problems
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Fermionic Symmetry

Fermionic symmetry is usually enforced via Slater determinants,

x1(r1) x2(r1) xn (r1)

1 |xa(r2) x2(r2) xn (r2)
¢(r17r2)"'7rN):W . :

xi(rv) x2(rv) -+ xwn(rw)

The time complexity for computing a determinant is of the order
O (N3) (or O (N?) for Vandermonde ansatzes).
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Inexpensive Symmetry Enforcement

To enforce symmetry of N particles, order their coordinates
lexicographically and consider the sign change in the corresponding
space subset. 3

ri <rjif x; <xj, or x; = x; and y; < y;j or x; = x; and so on.

Y({ra,-o}) =0 (@ v ({rrys- e )

For example, 2 fermions in a 1D box:

3M. Hutter, ArXiv:2007.15298 [Quant-Ph] (2020). 20/30
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Inexpensive Symmetry Enforcement

To enforce symmetry of N particles, order their coordinates
lexicographically and consider the sign change in the corresponding
space subset. 3

ri <rjif x; <xj, or x; = x; and y; < y;j or x; = x; and so on.

Y({r-d) =0 @ vs ({rra) - rmm})

Using quicksort lowers the symmetrization complexity to
O (Nlog N), with a small prefactor!

3M. Hutter, ArXiv:2007.15298 [Quant-Ph] (2020). 20/30
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Inexpensive Symmetry Enforcement

Diverging derivatives are treatable only via the path integral

approach!
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Energy estimation

A non-variational energy estimation can be extracted immediately.
® At long imaginary times we can write

i E
e Ao (R) = e 277 o (R)

_ArH
e h(po(R)
In (: wo(R) :)
Eo =—h

AT
® At each step we check if the "decay” estimation has converged

efAngiRO
In ( R
_h

AT

Edecay (77[)) =
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Non-interacting fermions in a 2D harmonic trap
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Spin polarized interacting fermions in a 2D harmonic trap
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Fidelity

The quality of the regression decreases slower than exponentially.

1.02F

/
—
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Wigner crystallization for N = 6

We shed light on the different transitions to a Wigner molecule of
the ground-state and spin-polarized cases.
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Summary

® SRW is an alternative to variational Monte Carlo that
enables more robust optimization with scalable imaginary
time propagation.

¢ Path integration obviates the need for spatial derivatives,
enabling utilization of non-differentiable or even discontinuous
ansatzes.

® Non-differentiable ansatzes are helpful in machine learning,
and enable highly efficient (anti)symmetry enforcement
by lexicographic sorting of coordinates.
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Bonus A - linear euclidean action

t t
REO) = (1= 5,) Rot 5 Rw
AT 2
L _ m Ry —Ro L
SE(RO,RN,AT)—/O [2 —= +V(R (t))] dt

AT
= "™ Ry —Ral2 L
= A= [Rw =Rl +/0 v(R (t)) dt

N N m_ \d/2 1
€ ¥ (Ro) ~ (27rA7'h) ns
exp {*%SIE‘ (Ro, R,’, AT)}
X Y (R;
2 Ny
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Bonus B - derivative-free variational energy estimation

We can avoid the differentiation of the wavefunction by
convoluting it with a Gaussian.

¥ (R) = ¥ (R) = (R) * g2 (R)
= [ (R=K) N ()

(A1) S ARKKY)

o <IZ ’J> - ZR,k/,k// B (R, K, k") >

Eo

A(RK.K') = B (R.K,K')
R — 02+ 0*V (R)
X
o
v (R-K)y (R-K")
2
v (R) .

B (R,K,K") =
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Bonus C - 2D harmonic oscillator energy levels

Energy )
"magic'
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https: //www.researchgate.net/figure/energy-levels-and-number-of-electrons-for-shell-closings-of-the-2d-harmonic-
oscillator_fig7-306243994
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Bonus D - Scaling results

~ ATO‘iO ~ 035 ~ M0-19
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Bonus E - Runtime scaling
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