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Lots of computational interest: Bludsky, Hamada, Jordan, Kresse, Paesani, 
Paulus, Peeters, Silvestrelli…

Theoretical 

“benchmarks”

Binding curve from density functional theory [PRB, 84, 033402 (2011)].

More accurate approaches are needed!
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• Consensus among DMC, CCSD(T), RPA+GWSE

0-leg 1-leg 2-leg

periodic systems, and in the past few years the computational
efficiency and accuracy of the technique have improved
significantly. In particular, a recent algorithmic development
has reduced computational effort by up to 2 orders of
magnitude.35 Subsequently it was shown that the new DMC
algorithm together with an effective estimation of finite-size
errors yields chemically accurate lattice energies for a range of
molecular crystals (including ice and delocalized π-systems)
with modest computational cost.36 In the current study we
performed DMC studies with the CASINO code37 for water
on benzene, coronene, and graphene in periodic unit cells. For
adsorption on graphene a large 5 × 5 unit cell was employed.
The second many-body approach used in this study is

coupled cluster theory, for both water adsorption on benzene
and coronone and on periodic graphene. Specifically, we used
linear scaling domain based pair natural orbital coupled cluster
theory including singles, doubles, and perturbative triples
[denoted here as the L-CCSD(T) method],38 as implemented
in the ORCA program package39 for the finite sized cluster
models. The periodic coupled cluster approach including
singles, doubles, and perturbative triples [denoted here as the
p-CCSD(T)] was used for adsorption on graphene.40 For
these calculations a periodic 4 × 4 unit cell was employed and
the coupled cluster code CC4S interfaced to the VASP
code41,42 was used.43,44

The third many-body approach employed is the random
phase approximation (RPA),45−49 which computes the
correlation energy based on the electron density response
function. RPA is computationally more affordable than
CCSD(T) and has recently shown good results, in particular
if singles corrections are introduced.36,50−52 However, it
includes fewer excitation types than CCSD(T) and thus one
has to carefully test its accuracy. Here we used RPA based on
PBE orbitals, i.e. the exact exchange energy EXX@PBE
combined with the correlation RPA@PBE. In addition, the
contribution from GW single excitations (GWSEs) was
computed based on the work of Klimes ̌ et al.53
Note that the calculations with the various methods used the

same adsorption structures (generated from DFT optimiza-
tions), and as reference the isolated fragments with fixed
(unrelaxed) geometries are taken.
Results. High-Level Adsorption Energies. Interaction energy

curves of water adsorbed in three different configurations (0-
leg, 1-leg, 2-leg; see Figure 2) on benzene, coronene, and
graphene have been computed with a range of many-body
methods. Here, DMC and CCSD(T) are considered bench-
mark quality methods, while RPA is tested as a cheaper
alternative. Due to the smaller unit cell used in p-CCSD(T),
we expect that DMC provides the best reference interaction
energies for water adsorbed on graphene. Combined
interaction energy curves for the considered systems are
shown in Figure 3, and interpolated minima are given in Table
2.
We begin by noting that the 0-leg configuration on benzene

is purely repulsive (i.e., unbound), while it becomes
increasingly attractive on coronene and graphene. This trend
is consistent with all methodologies, and DMC and L-
CCSD(T) agree within 2 meV for this binding motif. In
contrast, both the 1-leg and 2-leg structures bind on benzene,
with the 2-leg adsorption being 5−11 meV stronger. This
binding energy difference increases on coronene to 15−22
meV. This is due to a decreased binding energy of the 1-leg
motif (from benzene to coronene), while the 2-leg binding is

identical from DMC and RPA and even slightly stronger from
L-CCSD(T). In stark contrast to the behavior observed on the
small molecules, on periodic graphene the 0-leg, 1-leg, and 2-
leg structures have very similar DMC binding energies of −90
± 6, − 92 ± 6, and −99 ± 6 meV, respectively. Interestingly,
this includes the 0-leg configuration which on benzene was
purely repulsive. The contrast between benzene and graphene
for the 0-leg motif is quite remarkable and will be commented
on in more detail later.
The benchmark quality methods DMC and L-CCSD(T)

agree with each other on the molecular clusters with a
maximum error of 12 meV on the single-point evaluations and
6 meV for the interpolated binding energies. Similarly, the
DMC and CCSD(T) equilibrium binding energies on
graphene have only small deviations between 6 and 16 meV.
As the two electronic structure methods have quite distinct
foundations, this gives us confidence in the high accuracy of
the reported binding energies. RPA consistently underbinds all
structures by about 9−18 meV; this underestimation is
effectively reduced by the singles corrections. The GW based
density corrections also change the relative binding of the three
motifs, making the 2-leg 8 meV more stable than the 0-leg (in
agreement with DMC and CCSD(T)). The observed trend of
underestimated RPA binding energies and highly accurate RPA
+GWSE energies is consistent with previous findings on
molecular adsorption54 and molecular crystal lattice energies.52

Figure 3. Binding energy curves of water on benzene (top), coronene
(middle), and graphene (bottom) in the 0-leg, 1-leg, and 2-leg motifs
computed with the many-body electronic structure methods L-
CCSD(T), DMC, and RPA. Error bars in DMC correspond to the
stochastic error (1 standard deviation), in L-CCSD(T) to the basis set
uncertainty. Dashed lines are fits via a Morse potential (see
Supporting Information).
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Ref. Eb Method PRO / CON

1 -130 meV DFT/CC Unreliable extrapolation

2 -130 meV DFT-SAPT Unreliable extrapolation, 
SAPT is not a reference method

3 -70 ± 10 meV DMC Large stochastic error, 
finite-size effects are neglected

4 -135 meV i-CCSD(T) Single particle basis set too small

5 -99 ± 6 meV
-87 meV
-98 meV

DMC
p-CCSD(T)
RPA+GWSE 

Consensus between independent 
evaluations from UCL group (DMC), 
Grüneis’ group (pCCSD(T)), Kresse’s 
group (RPA+GWSE)

1. Miroslav Rubes et al., JPC C 2009, 113, 8412
2. G.R. Jenness, O. Karalti and K.D. Jordan, PCCP 2010, 12, 6375
3. J. Ma, A. Michaelides, D. Alfè, L. Schimka, G. Kresse, and E. Wang, Phys. Rev. B 2011, 84, 033402
4. E. Voloshina, D. Usvyat, M. Schutz, Y. Dedkov and B. Paulus PCCP 2011, 13, 12041
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Three polymorphs of ice and five crystals from the C21 test set of Otero-de-la-Roza and Johnson 

[JCP137:054103]

A representative set of 8 
molecular crystals, 
comprising a diversity in 
intermolecular interactions, 
from strong hydrogen 
bonds to London 
dispersion
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FIG. 3. Comparison of uncertainties for experimental (gold) and state-of-the-art computational (cyan) sublimation enthalpies. The gold bar
is due to the spread in the literature sublimation enthalpies, extrapolated to the temperature Tcalc for which the computational vibrational
contribution is available20. The number of available experimental values is reported below each bar. The cyan bar is due to geometry and
methodological approximations used in the computation of electronic lattice energies and vibrational thermal contributions.

tems. We subsequently show that uncertainties of experimen-
tal and state-of-the-art computational sublimation enthalpies
are currently comparable in magnitude. Our analysis suggests
that the overall accuracy of sublimation enthalpy estimates
could benefit from additional experiments as well as the appli-
cation of higher-accuracy techniques to vibrational properties.

IV. METHODS

The lattice energy is defined as

Elatt = Ecrys �Egas, (3)

where Ecrys is the total energy per molecule in the crystal
phase, and Egas is the total energy of the isolated molecule
in the gas phase.

Reference values for the absolute lattice energies were
computed with Fixed-Node DMC (FN-DMC), using the
CASINO33 code. We use energy-consistent correlated elec-
tron pseudopotentials34 (eCEPP) with the most recent deter-
minant locality approximation16 (DLA).

The trial wave functions were of the Slater-Jastrow type
with single Slater determinants, and the single-particle or-
bitals obtained from DFT local-density approximation35

(LDA) plane-wave calculations performed with PWscf36,37

using an energy cut-off of 600 Ry and re-expanded in terms of
B-splines38. The Jastrow factor included a two-body electron-
electron (e-e) term, two-body electron-nucleus (e-n) terms,
and three-body electron-electron-nucleus (e-e-n) terms. The
variational parameters of the Jastrow have been optimized by
minimizing the variance in the simulated cell for each ana-
lyzed crystal. The size of the simulation cell imposes some
constraints on the Jastrow variational freedom, in the form of
cut-offs in the e-n, e-e, and e-e-n terms. Following the work-
flow given in Ref. 12, tested on molecular crystals12 and ice
polymorphs17, the simulation cells have been generally de-
fined in order to guarantee the radius of the sphere inscribed
in the Wigner-Seitz cell to be bigger than 5 Å.

The time step t is a key factor affecting the accuracy of
DMC calculations. In DMC, a propagation according to the
imaginary time Schrödinger equation is performed to project
out the exact ground state from a trial wave function39. A
time step t must be chosen, but the projection is exact only
in the continuous limit t ! 0. However, the ZSGMA15 DMC
algorithm gives better convergence with respect to t than pre-
viously used methods because the time-step bias per molecule
is independent of the size of the simulated cell in molecular
crystals12. In this work, we have verified the time step con-



boundary condition, we can form the product distribution f =
ΨΨT that obeys

τ τ= Ψ Ψ ≥f R R R( , ) ( , ) ( ) 0T (5)

for any τ. Imposing this boundary condition (see Figure 4 for
illustration) is known as the fixed-node approximation, and the

related method is known as the fixed-node diffusion Monte
Carlo, denoted as FNDMC from now on. It is straightforward to
show that for local (i.e., multiplicative) potentials, it produces an
upper bound for the energy.114 For complex wave functions, the
analogous condition can be formulated as a fixed-phase
approximation.115

Apart from the Fermion sign problem, the basic DMC
algorithm introduced above suffers from the poor statistical error
convergence that can be significantly improved by the
importance sampling transformation.116 The fixed-node con-
dition and importance sampling are both conveniently obtained
by simulating a master equation for the product distribution f(R,
τ), obtained from the original evolution eq 3 multiplied by ΨT,
that reads

∂ = ∇ − ∇ × ∇ |Ψ | − −τf f f E E f(1/2) ( ln ) ( )2
T loc T (6)

where Eloc = [HΨT]/ΨT, with the corresponding rearrangements
of the integral form (eq 4). Besides the diffusion term, the
resulting second-order operator exhibits also a new drift term and
the potential energy is replaced by the local energy. The drift
vector ∇ ln |ΨT| points toward the regions of the configuration
space where ΨT amplitudes are large. Since it diverges at the
node, it forbids the node crossing, imposing thus the fixed-node
condition. Note that by this transformation the large fluctuations
from the potential energy are replaced by much smaller
fluctuations of the local energy. This results in a very substantial
improvement of the overall efficiency, often by orders of
magnitude, depending on the quality of ΨT.

Clearly, the Fermion sign problem forces us to make a
nontrivial departure from the formally exact projection
formulation, and the fixed-node approximation, in general,
leads to some systematic bias. Unlike the one-particle basis set
biases in the mainstream methods that have been studied for
many decades, the nature of the fixed-node bias is, at least
initially, somewhat nebulous. In order to shed some light on it,
one can show that the convergence to the exact energy scales
quadratically in the nodal displacement error.89 Consequently,
the knowledge of the exact node would enable recovery of the
exact eigenvalue (in polynomial time), and the fixed-node
algorithm would produce samples of the exact eigenstate. Of
course, what is crucial for practical applications is the total error
and that includes not only scaling but also the prefactor. It is quite
challenging to find a rigorous bound for the prefactor, and
therefore, the estimates mostly rely on aposteriori assessments.
There is a substantial body of electronic structure FNDMC
calculations that show that the fixed-node bias is rather small, one
can perhaps even say, unexpectedly small. For the total energies,
even when using just single-reference trial wave functions such as
the ones based on HF orbitals, the error is typically not bigger
than 5−10% of the correlation energy (Ecorr = Eexact − EHF). This
value is sufficient for predictive energy differences such as
cohesion, bonding, excitations, etc., often within a few percent of
the experiments. Systematically improved multideterminant
wave functions were shown to achieve near chemical accuracy
(1.2 kcal/mol in average) for atomization energies.117 For large
systems, this approach might be too demanding in general.
However, a few determinant trial functions that describe, say,
excited singlets in gap calculations of supercell solids are feasible.
In small molecular systems, on the other hand, the CC
methodology provides accurate answers for lower cost. For
noncovalent interactions, the fixed-node bias is especially
relevant and it is very favorable that in these types of systems it
largely cancels out. We further focus on this particular aspect in
some detail later (section 3.2). Although the nodes are
systematically improvable, so far the cost of such improvements
is significant. Nevertheless, some progress in understanding the
nodal properties and their impact on calculated energies has been
achieved over the last three decades.118−122 Before we go any
further into the fine points of the fixed-node errors, let us first
introduce the trial wave functions that are commonly used in
FNDMC calculations.
2.2. Trial Wave Functions

Another important advantage of stochastic methods is the vastly
increased variational freedom for capturing the many-body
effects explicitly. The random sampling not only enables the
exploration of much larger space of suitable functional forms but
also can lead to much more compact wave functions. For
example, it is straightforward to capture the leading nonanalytical
behavior such as electron−nucleus and electron−electron cusps
explicitly and exactly. Clearly, this recovers a significant part of
the correlations that are otherwise difficult to describe in
methods that are built upon one-particle bases.
The most widely used forms are the Slater-Jastrow trial wave

functions with an antisymmetric part ΨA given by single- or
multireference Slater determinant(s) multiplied by a symmetric
positive definite Jastrow-Bijl correlation factor J

∑ φ φΨ = Ψ × =

× + + +

α β↑ ↓J c i j

U U U

det [ ( )]det [ ( )]

exp( ...)

A
n

n n k n lT

1 2 3 (7)

Figure 4. Illustration of a toy FNDMC algorithm in a one-dimensional
attractive potential V(x). The samples are initially drawn from a uniform
distribution. The imaginary-time τ propagation consists of diffusion,
restriction of node-crossing, and branching. In the limit of infinite time,
the distribution samples the exact ground state Ψ(x) within the
constraint imposed by the node, where the potential barrier is infinite.
The node therefore enforces Ψ(x) to sample an excited state.
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A propagation according to the imaginary time 
Schrodinger equation is performed to project 
out the “exact” ground state Φ(R) from a trial 
wave function ΨT(R).

oGenerate a set of configurations (walkers) 
according to a trial wave function ΨT(R)
oPropagate in time, with finite time-step τ, 
according to the Green’s function (branching-
drift-diffusion process)
oThe set of walkers determines f(R,t), 
converging to Φ(R)ΨT(R) for large time.
oFixed node constraint

Two phases in DMC simulation:
oEquilibration (project out the exact G.S.)
oStatistical sampling (stochastic method, 
autocorrelation time)

DMC computational cost is proportional to 1/τ.
Chem. Rev., 116, 5188, (2016)



In traditional FN-DMC the guiding function ΨT(R) is a Slater-Jastrow wave function.

Features:
oAccuracy (improving DFT, typically comparable to CCSD(T), reference method)
oSize scaling (typically !!, same as DFT but with large prefactor: between 10! and 10")
oIdeal for HCP facilities (Parallel algorithms and limited memory requirements, also GPUs) 

Approximations involved:
oFixed-node/phase (fermionic systems)
oPseudo-potentials (non-local terms)
oFinite time-step τ (Green’s function is known exactly for infinitesimal τ)
oModified Green’s function (stability)
oFinite size errors in periodic systems



How bad are the approximations involved?

oFixed-node/phase (fermionic systems)
oPseudo-potentials (non-local terms)
First two are usually not an issue in non-covalent interactions (almost perfect 
error cancellation). 

oFinite time-step τ (Green’s function is known exactly for infinitesimal τ)
Value of time-step τ is crucial: 
Trade-off between accuracy and efficiency

oModified Green’s function (stability)
If a walker goes close to the nodal surface, its branching weight can diverge. 
Avoid that!

oFinite size errors
Either do an extrapolation to the thermodynamic limit via expensive supercell 
simulations or rely on correction schemes.



• Enforce size-consistency and reduce time-step bias
A Zen, et al., Phys. Rev. B, 93, 241118(R) (2016) 

• Accurate and fast in periodic systems
A Zen et al., Proc. Natl. Acad. Sci. U.S.A.,115, 1724 (2018)

• Improving reproducibility and reducing the optimization bias
A Zen et al., J. Chem. Phys. 151, 134105 (2019)

Keep uncertainty small 
(both for sampling and for optimisation)

Promote reproducibility & accuracy



Get the
determinant

from a 
deterministic 

method 
(HF, DFT, CASSCF, 

…)
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ionization energies (Sec. IV B), stability (Sec. IV C), and efficiency
(Sec. IV D). A reader already familiar with DMC can skip to Sec. III.
We draw our final conclusions in Sec. V.

II. OVERVIEW ON FIXED NODE DIFFUSION
MONTE CARLO

A. The trial wave function
The trial wave function has a critical role in determining the

accuracy of FN-DMC. A QMC trial wave function is the product
ΨT(R) = D(R) ∗ expJ(R) of an antisymmetric function D(R)
and a symmetric (bosonic) function expJ(R), called the Jastrow
factor, where R is the electronic configuration. The function D(R)
is typically a single Slater determinant, especially when large systems
are simulated. However, it is worth mentioning that if the system
under consideration is not too large (say, generally not more than a
few atoms) better functions can be used, such as multideterminant
expansions of Slater determinants,34–39 valence-bond wave func-
tions,40 the antisymmetrized geminal product,41,42 the Pfaffian,43
and others (see, for instance, the review by Austin et al.44). More-
over, the backflow transformation45–47 can be employed to further
improve any of the aforementioned ansätze, at the price of a signif-
icantly larger computational cost. The Jastrow factor describes the
dynamical correlation between the electrons, by including explicit
functions of the electron-electron distances. In DMC, a property of
interest is the nodal surface of ΨT , which is the hypersurface cor-
responding to ΨT(R) = 0, for real wave functions, or the complex
phase of ΨT for complex wave functions. They are both determined
by D(R) as the Jastrow factor can only alter the amplitude of ΨT .
The Jastrow factor J is implemented differently in different QMC
packages.

When large and complex systems are simulated, such as
adsorption on surfaces or molecular crystals, the most common
practice is to obtain D from a deterministic approach, usually DFT,
and to decide a functional form for J and optimize, within the
variational Monte Carlo (VMC) scheme,1 the parameters minimiz-
ing either the energy or the variance. Since D comes from a deter-
ministic method, there is no reproducibility problem here, and in
taking energy differences we can usually expect a large cancella-
tion of the FN error. On the other hand, J is optimized stochas-
tically, so its parameters are affected by an optimization uncer-
tainty. Dealing with this uncertainty becomes increasingly challeng-
ing as the system gets larger. Moreover, a new optimization of J

is needed for every distinct orientation of the molecular systems,
and optimizing J so frequently is tedious and time-consuming,
and, due to the stochastic nature of the optimization procedure,
can lead to Jastrow factors of different qualities, resulting in less
than optimal cancellation of errors. A human supervision of the
optimization is always highly recommended, if not necessary. The
optimization is responsible for making QMC labor intense and
nonautomatic.

B. Diffusion Monte Carlo
The DMC algorithm with importance sampling performs

a time evolution of f (R, t) = ΨT(R)ψ(R, t), where ΨT(R)
is a trial wave function (described in Sec. II A), R are the

3N-dimensional electronic coordinates, and ψ(R, t) is the solution
at time t of the imaginary time Schödinger equation,

− @

@t
ψ(R, t) = �Ĥ − ET�ψ(R, t), (1)

where Ĥ is the Hamiltonian and ET is a trial energy, with initial con-
dition ψ(R, 0) = ΨT(R) and converging exponentially to the exact
ground state Φ(R) for t → ∞. Thus, limt→∞f (R, t) = ΨT(R)Φ(R).
Since Φ is an eigenstate for Ĥ, the ground state energy E0 can be
calculated using the mixed estimator,

E0 = �Φ�Ĥ�ΨT��Φ�ΨT� = ∫
Φ(R)ΨT(R)EL(R)dR
∫ Φ(R)ΨT(R)dR , (2)

where EL(R) = �R�Ĥ�ΨT��R�ΨT� is the local energy in the electronic configu-
ration R for the trial wave function ΨT .

The time evolution of f (R, t) follows from the imaginary time
Schödinger equation (1), which in the integral form leads to

f �R′, t + τ� = � G�R′ ← R, τ�f (R, t)dR, (3)

where τ is the time step and G(R′ ← R, τ) is the Green function for
the importance sampling, which is defined (symbolically) as

G(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′� exp(−τĤ)�R�. (4)

Thus, by starting from f (R, 0) = ΨT(R)2 and performing an evolu-
tion according to the Green function G(R′ ← R, t), we are able to
assess expectation values of the exact ground state Φ,

Φ(R′)ΨT(R′) = lim
t→∞� G(R′ ← R, t)ΨT(R)2dR. (5)

This is the process implemented in the DMC algorithm. In fermionic
systems, the fixed-node (FN) approximation is typically introduced,
so the FN Hamiltonian ĤFN ≡ Ĥ + V̂FN , where V̂FN is an infinite wall
at the nodal surface of ΨT , is used. Further details are reported in
Appendix A.

TheHamiltonian Ĥ is the sum of the kinetic and potential oper-
ators K̂ and V̂ , respectively. In all-electron calculations, the poten-
tial operator V̂ is local, V̂ = V̂L. However, in general, there is the
need to deploy pseudopotentials to represent the core electrons of
the atoms and reduce the computational cost of the calculation, see
Appendix B. In this case, the potential term has both local and non-
local operators: V̂ = V̂L + V̂NL. The presence of nonlocal operators in
the potential complicates the formulation of the DMC algorithm and
forces the introduction of a further approximation. In the following,
we will first consider the simple case of a potential with only local
operators, Sec. II C, and later we will consider the case of potential
term with nonlocal operators, Sec. II D.

C. Green’s function for Ĥ = K̂ + V̂L

The simplest case is when the Hamiltonian has only a local
potential term; thus, it can be written as Ĥ = K̂ + V̂L, with

J. Chem. Phys. 151, 134105 (2019); doi: 10.1063/1.5119729 151, 134105-3
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• DMC dependece on parameters is smoother 
than in VMC

• Many local minima in VMC energy
• No general correspondence between VMC 

and DMC minima
• Optimese parameters minimising the VMC 

energy or the VMC variance
• DMC energy satisfies variational principle

• DMC energy, in the limit of infinitisemal 
timestep, is independent on the Jastrow 
parametrisation

• DMC energy depends on determinant
• Jastrow parametrisation affects efficiency and 

timestep dependency



w/o PPs
All electrons (AE)

Hamiltonian 

Time evolution

Green’s function Branching drift diffusion

Needed 1) Fixed node approximation
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ionization energies (Sec. IV B), stability (Sec. IV C), and efficiency
(Sec. IV D). A reader already familiar with DMC can skip to Sec. III.
We draw our final conclusions in Sec. V.
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accuracy of FN-DMC. A QMC trial wave function is the product
ΨT(R) = D(R) ∗ expJ(R) of an antisymmetric function D(R)
and a symmetric (bosonic) function expJ(R), called the Jastrow
factor, where R is the electronic configuration. The function D(R)
is typically a single Slater determinant, especially when large systems
are simulated. However, it is worth mentioning that if the system
under consideration is not too large (say, generally not more than a
few atoms) better functions can be used, such as multideterminant
expansions of Slater determinants,34–39 valence-bond wave func-
tions,40 the antisymmetrized geminal product,41,42 the Pfaffian,43
and others (see, for instance, the review by Austin et al.44). More-
over, the backflow transformation45–47 can be employed to further
improve any of the aforementioned ansätze, at the price of a signif-
icantly larger computational cost. The Jastrow factor describes the
dynamical correlation between the electrons, by including explicit
functions of the electron-electron distances. In DMC, a property of
interest is the nodal surface of ΨT , which is the hypersurface cor-
responding to ΨT(R) = 0, for real wave functions, or the complex
phase of ΨT for complex wave functions. They are both determined
by D(R) as the Jastrow factor can only alter the amplitude of ΨT .
The Jastrow factor J is implemented differently in different QMC
packages.

When large and complex systems are simulated, such as
adsorption on surfaces or molecular crystals, the most common
practice is to obtain D from a deterministic approach, usually DFT,
and to decide a functional form for J and optimize, within the
variational Monte Carlo (VMC) scheme,1 the parameters minimiz-
ing either the energy or the variance. Since D comes from a deter-
ministic method, there is no reproducibility problem here, and in
taking energy differences we can usually expect a large cancella-
tion of the FN error. On the other hand, J is optimized stochas-
tically, so its parameters are affected by an optimization uncer-
tainty. Dealing with this uncertainty becomes increasingly challeng-
ing as the system gets larger. Moreover, a new optimization of J

is needed for every distinct orientation of the molecular systems,
and optimizing J so frequently is tedious and time-consuming,
and, due to the stochastic nature of the optimization procedure,
can lead to Jastrow factors of different qualities, resulting in less
than optimal cancellation of errors. A human supervision of the
optimization is always highly recommended, if not necessary. The
optimization is responsible for making QMC labor intense and
nonautomatic.

B. Diffusion Monte Carlo
The DMC algorithm with importance sampling performs

a time evolution of f (R, t) = ΨT(R)ψ(R, t), where ΨT(R)
is a trial wave function (described in Sec. II A), R are the

3N-dimensional electronic coordinates, and ψ(R, t) is the solution
at time t of the imaginary time Schödinger equation,

− @

@t
ψ(R, t) = �Ĥ − ET�ψ(R, t), (1)

where Ĥ is the Hamiltonian and ET is a trial energy, with initial con-
dition ψ(R, 0) = ΨT(R) and converging exponentially to the exact
ground state Φ(R) for t → ∞. Thus, limt→∞f (R, t) = ΨT(R)Φ(R).
Since Φ is an eigenstate for Ĥ, the ground state energy E0 can be
calculated using the mixed estimator,

E0 = �Φ�Ĥ�ΨT��Φ�ΨT� = ∫
Φ(R)ΨT(R)EL(R)dR
∫ Φ(R)ΨT(R)dR , (2)

where EL(R) = �R�Ĥ�ΨT��R�ΨT� is the local energy in the electronic configu-
ration R for the trial wave function ΨT .

The time evolution of f (R, t) follows from the imaginary time
Schödinger equation (1), which in the integral form leads to

f �R′, t + τ� = � G�R′ ← R, τ�f (R, t)dR, (3)

where τ is the time step and G(R′ ← R, τ) is the Green function for
the importance sampling, which is defined (symbolically) as

G(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′� exp(−τĤ)�R�. (4)

Thus, by starting from f (R, 0) = ΨT(R)2 and performing an evolu-
tion according to the Green function G(R′ ← R, t), we are able to
assess expectation values of the exact ground state Φ,

Φ(R′)ΨT(R′) = lim
t→∞� G(R′ ← R, t)ΨT(R)2dR. (5)

This is the process implemented in the DMC algorithm. In fermionic
systems, the fixed-node (FN) approximation is typically introduced,
so the FN Hamiltonian ĤFN ≡ Ĥ + V̂FN , where V̂FN is an infinite wall
at the nodal surface of ΨT , is used. Further details are reported in
Appendix A.

TheHamiltonian Ĥ is the sum of the kinetic and potential oper-
ators K̂ and V̂ , respectively. In all-electron calculations, the poten-
tial operator V̂ is local, V̂ = V̂L. However, in general, there is the
need to deploy pseudopotentials to represent the core electrons of
the atoms and reduce the computational cost of the calculation, see
Appendix B. In this case, the potential term has both local and non-
local operators: V̂ = V̂L + V̂NL. The presence of nonlocal operators in
the potential complicates the formulation of the DMC algorithm and
forces the introduction of a further approximation. In the following,
we will first consider the simple case of a potential with only local
operators, Sec. II C, and later we will consider the case of potential
term with nonlocal operators, Sec. II D.

C. Green’s function for Ĥ = K̂ + V̂L

The simplest case is when the Hamiltonian has only a local
potential term; thus, it can be written as Ĥ = K̂ + V̂L, with
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K̂ = − 1
2∇2. By substitution in the imaginary time Schrödinger

equation [Eq. (1)], multiplication by ΨT(R), and some algebraic
operations, we obtain

@

@t
f (R, t) = 1

2
∇2f (R, t) −∇ ⋅ (V(R)f (R, t))
− [EL(R) − ET] f (R, t), (6)

where V(R) = ∇ log�ΨT(R)�. Thus, the time evolution of f (R, t)
is given on the right-hand side (RHS) of Eq. (6). If the RHS only
had the first two terms, we would have a pure drift-diffusion pro-
cess, having a Green’s function that for a small time step τ and
for N electrons in the system can be approximated as GDD(R′
← R, τ) = 1(2πτ)3 N�2 exp�− [R′−R−τV(R)]22τ �. The last term on the RHS
of Eq. (6) is the branching term, and its associated Green’s function
is GB(R′ ← R, τ) = exp�−τ EL(R′)+EL(R)−2ET

2 �. Green’s function of
f (R, t) for a small time interval τ can be approximated48,49 as

GBDD(R′ ← R, τ) ≈ GB(R′ ← R, τ)GDD(R′ ← R, τ), (7)

which is exact for τ → 0. GBDD(R′ ← R, τ) can be used to approx-
imate Green’s function for an arbitrarily large time interval t.50
GBDD defines a branching-drift-diffusion process, as described, for
instance, in Ref. 1. The algorithms implemented in QMC packages
are usually a little more involved.51,110,111 However, there is no need
here to complicate further the picture.Wewill be concerned with the
results of DMC in the continuous limit τ → 0. In this limit, the only
bias in the DMC energy evaluation EFN is given by the FN approxi-
mation. In particular, EFN ≥ E0, with the equality reached if the nodes
of ΨT are exact.

D. Green’s function for Ĥ = K̂ + V̂L + V̂NL

When pseudopotentials are used, the potential term has non-
local operators V̂NL, and the Hamiltonian can be written as
Ĥ = K̂ + V̂L + V̂NL. If we consider the imaginary time Schrödinger
equation (1) and substitute Ĥ, we obtain the following time evolu-
tion of f (R, t):

@

@t
f (R, t) = 1

2
∇2f (R, t) −∇ ⋅ (V(R)f (R, t))
−�����
�K̂ + V̂L�ΨT(R)

ΨT(R) +
V̂NLψ(R, t)
ψ(R, t) − ET����� f (R, t). (8)

The drift and diffusion terms on the RHS are identical to Eq. (6), but
there is a complication in the branching term. Indeed, we cannot
calculate V̂NLψ(R,t)

ψ(R,t) , as we do not know the analytical form of ψ(R, t).
There is an alternative approach, which is to write the Green’s

function G(R′ ← R, τ) for Ĥ. Using the Zassenhaus formula, for
small τ, we can approximate e−τ(K̂+V̂L+V̂NL) with e−τV̂NL e−τ(K̂+V̂L), and
by substituting it into Eq. (4), we obtain

G(R′ ← R, τ) ∼ � TNL(R′ ← R̃, τ)∗GL(R̃← R, τ)dR̃, (9)

where GL(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′�e−τ(K̂+V̂L)�R� is Green’s function

for the local part of the Hamiltonian, which has been discussed in
Sec. II C, and TNL(R′ ← R, τ) ≡ ΨT(R′)

ΨT(R) �R′�e−τV̂NL �R� is Green’s

function of the nonlocal part of the potential. For small τ, we have
that TNL(R′ ← R, τ) ∼ δR′ ,R − τVR′ ,R, where δR′ ,R is the Dirac’s delta
and

VR′ ,R ≡ ΨT(R′)
ΨT(R) �R′�V̂NL�R�. (10)

Notice that VR′ ,R can be either positive or negative depending on
ΨT , V̂NL, R, and R′. Whenever VR′ ,R > 0 for some R′ ≠ R, then
TNL(R′ ← R, τ) < 0. The DMC algorithm needs to interpret the
Green’s function as a transition probability, but if TNL(R′ ← R, τ)< 0 for some R and R′, it cannot be a transition probability from R
to R′ (sign problem). Thus, the presence of V̂NL yields a sign prob-
lem in the DMC algorithm29,31 because it gives a Green’s function
G(R′ ← R, τ) which can have negative terms.

There is no direct solution to this problem, and as a con-
sequence, an approximation is introduced. As noted earlier, two
approaches are available: either to use the locality approximation
(LA)30 or Casula’s T-move approximation (TM).29,31 They are sum-
marized in Secs. II D 1 and II D 2.

1. Locality approximation in FN-DMC
The approach taken in LA is to approximate the unknown

quantity V̂NLΦ(R,t)
Φ(R,t) with V̂NLΨT(R)

ΨT(R) , which is the value of the nonlo-
cal potential localized on the trial wave function ΨT(R). By using
this approximation in Eq. (8), we obtain that the 3rd term on the
RHS is −[EL(R) − ET]f (R, t), and the equation becomes identical
to Eq. (6). Thus, Green’s function in LA is given by Eq. (7) and the
DMC algorithm is a branching-drift-diffusion process.

The major difference from Sec. II C is that we approximate
the Hamiltonian, which is no longer given by the FN Hamiltonian
ĤFN ≡ Ĥ + V̂FN , but by

ĤLA
FN ≡ K̂ + V̂L +

V̂NLΨT

ΨT
+ V̂FN , (11)

where the notation V̂NLΨT
ΨT

is used to indicate that the non-
local potential V̂NL has been localized using the function
ΨT(R). So, given a generic function ξ(R), we have V̂NLΨT

ΨT
ξ(R)

= ∫ dR′ΨT(R′)�R′�V̂NL�R� ξ(R)
ΨT(R) . Notice that ĤLA

FN has no nonlocal
potential term, i.e., the action of ĤLA

FN on the generic function ξ at
point R only depends on the value of ξ at R.

The ground state for ĤLA
FN is the projected wave function ΦLA

FN .
The expectation value of the energy ELA

FN can be evaluated using the
mixed estimator because V̂NLΨT

ΨT
ΨT(R) = V̂NLΨT(R), so ĤLA

FN �ΨT�= Ĥ�ΨT�. However, in general ΦLA
FN is different from the (unknown)

ground state ΦFN for ĤFN ; thus, ELA
FN ≠ EFN . In other words, with

LA we have lost the variationality of the approach because the error
introduced by this approximation can either be positive or nega-
tive, and ELA

FN is not, in general, an upper bound for E0. Only in
the (ideal) case of ΨT = ΦFN , we do have ĤLA

FN �ΦFN� = EFN �ΦFN�,
so ELA

FN = EFN . As a corollary, with the exact trial wave function,
ΨT = Φ, then we have that ELA

FN = E0. However, the trial wave
function having exact nodes is not a sufficient condition for having
ELA
FN = E0 as the LA depends on the overall trial wave functionΨT and

not just on its nodes.52 In other words, ELA
FN has both a FN error and a
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2∇2. By substitution in the imaginary time Schrödinger

equation [Eq. (1)], multiplication by ΨT(R), and some algebraic
operations, we obtain

@

@t
f (R, t) = 1

2
∇2f (R, t) −∇ ⋅ (V(R)f (R, t))
− [EL(R) − ET] f (R, t), (6)

where V(R) = ∇ log�ΨT(R)�. Thus, the time evolution of f (R, t)
is given on the right-hand side (RHS) of Eq. (6). If the RHS only
had the first two terms, we would have a pure drift-diffusion pro-
cess, having a Green’s function that for a small time step τ and
for N electrons in the system can be approximated as GDD(R′
← R, τ) = 1(2πτ)3 N�2 exp�− [R′−R−τV(R)]22τ �. The last term on the RHS
of Eq. (6) is the branching term, and its associated Green’s function
is GB(R′ ← R, τ) = exp�−τ EL(R′)+EL(R)−2ET

2 �. Green’s function of
f (R, t) for a small time interval τ can be approximated48,49 as

GBDD(R′ ← R, τ) ≈ GB(R′ ← R, τ)GDD(R′ ← R, τ), (7)

which is exact for τ → 0. GBDD(R′ ← R, τ) can be used to approx-
imate Green’s function for an arbitrarily large time interval t.50
GBDD defines a branching-drift-diffusion process, as described, for
instance, in Ref. 1. The algorithms implemented in QMC packages
are usually a little more involved.51,110,111 However, there is no need
here to complicate further the picture.Wewill be concerned with the
results of DMC in the continuous limit τ → 0. In this limit, the only
bias in the DMC energy evaluation EFN is given by the FN approxi-
mation. In particular, EFN ≥ E0, with the equality reached if the nodes
of ΨT are exact.

D. Green’s function for Ĥ = K̂ + V̂L + V̂NL

When pseudopotentials are used, the potential term has non-
local operators V̂NL, and the Hamiltonian can be written as
Ĥ = K̂ + V̂L + V̂NL. If we consider the imaginary time Schrödinger
equation (1) and substitute Ĥ, we obtain the following time evolu-
tion of f (R, t):

@

@t
f (R, t) = 1

2
∇2f (R, t) −∇ ⋅ (V(R)f (R, t))
−�����
�K̂ + V̂L�ΨT(R)

ΨT(R) +
V̂NLψ(R, t)
ψ(R, t) − ET����� f (R, t). (8)

The drift and diffusion terms on the RHS are identical to Eq. (6), but
there is a complication in the branching term. Indeed, we cannot
calculate V̂NLψ(R,t)

ψ(R,t) , as we do not know the analytical form of ψ(R, t).
There is an alternative approach, which is to write the Green’s

function G(R′ ← R, τ) for Ĥ. Using the Zassenhaus formula, for
small τ, we can approximate e−τ(K̂+V̂L+V̂NL) with e−τV̂NL e−τ(K̂+V̂L), and
by substituting it into Eq. (4), we obtain

G(R′ ← R, τ) ∼ � TNL(R′ ← R̃, τ)∗GL(R̃← R, τ)dR̃, (9)

where GL(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′�e−τ(K̂+V̂L)�R� is Green’s function

for the local part of the Hamiltonian, which has been discussed in
Sec. II C, and TNL(R′ ← R, τ) ≡ ΨT(R′)

ΨT(R) �R′�e−τV̂NL �R� is Green’s

function of the nonlocal part of the potential. For small τ, we have
that TNL(R′ ← R, τ) ∼ δR′ ,R − τVR′ ,R, where δR′ ,R is the Dirac’s delta
and

VR′ ,R ≡ ΨT(R′)
ΨT(R) �R′�V̂NL�R�. (10)

Notice that VR′ ,R can be either positive or negative depending on
ΨT , V̂NL, R, and R′. Whenever VR′ ,R > 0 for some R′ ≠ R, then
TNL(R′ ← R, τ) < 0. The DMC algorithm needs to interpret the
Green’s function as a transition probability, but if TNL(R′ ← R, τ)< 0 for some R and R′, it cannot be a transition probability from R
to R′ (sign problem). Thus, the presence of V̂NL yields a sign prob-
lem in the DMC algorithm29,31 because it gives a Green’s function
G(R′ ← R, τ) which can have negative terms.

There is no direct solution to this problem, and as a con-
sequence, an approximation is introduced. As noted earlier, two
approaches are available: either to use the locality approximation
(LA)30 or Casula’s T-move approximation (TM).29,31 They are sum-
marized in Secs. II D 1 and II D 2.

1. Locality approximation in FN-DMC
The approach taken in LA is to approximate the unknown

quantity V̂NLΦ(R,t)
Φ(R,t) with V̂NLΨT(R)

ΨT(R) , which is the value of the nonlo-
cal potential localized on the trial wave function ΨT(R). By using
this approximation in Eq. (8), we obtain that the 3rd term on the
RHS is −[EL(R) − ET]f (R, t), and the equation becomes identical
to Eq. (6). Thus, Green’s function in LA is given by Eq. (7) and the
DMC algorithm is a branching-drift-diffusion process.

The major difference from Sec. II C is that we approximate
the Hamiltonian, which is no longer given by the FN Hamiltonian
ĤFN ≡ Ĥ + V̂FN , but by

ĤLA
FN ≡ K̂ + V̂L +

V̂NLΨT

ΨT
+ V̂FN , (11)

where the notation V̂NLΨT
ΨT

is used to indicate that the non-
local potential V̂NL has been localized using the function
ΨT(R). So, given a generic function ξ(R), we have V̂NLΨT

ΨT
ξ(R)

= ∫ dR′ΨT(R′)�R′�V̂NL�R� ξ(R)
ΨT(R) . Notice that ĤLA

FN has no nonlocal
potential term, i.e., the action of ĤLA

FN on the generic function ξ at
point R only depends on the value of ξ at R.

The ground state for ĤLA
FN is the projected wave function ΦLA

FN .
The expectation value of the energy ELA

FN can be evaluated using the
mixed estimator because V̂NLΨT

ΨT
ΨT(R) = V̂NLΨT(R), so ĤLA

FN �ΨT�= Ĥ�ΨT�. However, in general ΦLA
FN is different from the (unknown)

ground state ΦFN for ĤFN ; thus, ELA
FN ≠ EFN . In other words, with

LA we have lost the variationality of the approach because the error
introduced by this approximation can either be positive or nega-
tive, and ELA

FN is not, in general, an upper bound for E0. Only in
the (ideal) case of ΨT = ΦFN , we do have ĤLA

FN �ΦFN� = EFN �ΦFN�,
so ELA

FN = EFN . As a corollary, with the exact trial wave function,
ΨT = Φ, then we have that ELA

FN = E0. However, the trial wave
function having exact nodes is not a sufficient condition for having
ELA
FN = E0 as the LA depends on the overall trial wave functionΨT and

not just on its nodes.52 In other words, ELA
FN has both a FN error and a

J. Chem. Phys. 151, 134105 (2019); doi: 10.1063/1.5119729 151, 134105-4

Published under license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

ionization energies (Sec. IV B), stability (Sec. IV C), and efficiency
(Sec. IV D). A reader already familiar with DMC can skip to Sec. III.
We draw our final conclusions in Sec. V.

II. OVERVIEW ON FIXED NODE DIFFUSION
MONTE CARLO

A. The trial wave function
The trial wave function has a critical role in determining the

accuracy of FN-DMC. A QMC trial wave function is the product
ΨT(R) = D(R) ∗ expJ(R) of an antisymmetric function D(R)
and a symmetric (bosonic) function expJ(R), called the Jastrow
factor, where R is the electronic configuration. The function D(R)
is typically a single Slater determinant, especially when large systems
are simulated. However, it is worth mentioning that if the system
under consideration is not too large (say, generally not more than a
few atoms) better functions can be used, such as multideterminant
expansions of Slater determinants,34–39 valence-bond wave func-
tions,40 the antisymmetrized geminal product,41,42 the Pfaffian,43
and others (see, for instance, the review by Austin et al.44). More-
over, the backflow transformation45–47 can be employed to further
improve any of the aforementioned ansätze, at the price of a signif-
icantly larger computational cost. The Jastrow factor describes the
dynamical correlation between the electrons, by including explicit
functions of the electron-electron distances. In DMC, a property of
interest is the nodal surface of ΨT , which is the hypersurface cor-
responding to ΨT(R) = 0, for real wave functions, or the complex
phase of ΨT for complex wave functions. They are both determined
by D(R) as the Jastrow factor can only alter the amplitude of ΨT .
The Jastrow factor J is implemented differently in different QMC
packages.

When large and complex systems are simulated, such as
adsorption on surfaces or molecular crystals, the most common
practice is to obtain D from a deterministic approach, usually DFT,
and to decide a functional form for J and optimize, within the
variational Monte Carlo (VMC) scheme,1 the parameters minimiz-
ing either the energy or the variance. Since D comes from a deter-
ministic method, there is no reproducibility problem here, and in
taking energy differences we can usually expect a large cancella-
tion of the FN error. On the other hand, J is optimized stochas-
tically, so its parameters are affected by an optimization uncer-
tainty. Dealing with this uncertainty becomes increasingly challeng-
ing as the system gets larger. Moreover, a new optimization of J

is needed for every distinct orientation of the molecular systems,
and optimizing J so frequently is tedious and time-consuming,
and, due to the stochastic nature of the optimization procedure,
can lead to Jastrow factors of different qualities, resulting in less
than optimal cancellation of errors. A human supervision of the
optimization is always highly recommended, if not necessary. The
optimization is responsible for making QMC labor intense and
nonautomatic.

B. Diffusion Monte Carlo
The DMC algorithm with importance sampling performs

a time evolution of f (R, t) = ΨT(R)ψ(R, t), where ΨT(R)
is a trial wave function (described in Sec. II A), R are the

3N-dimensional electronic coordinates, and ψ(R, t) is the solution
at time t of the imaginary time Schödinger equation,

− @

@t
ψ(R, t) = �Ĥ − ET�ψ(R, t), (1)

where Ĥ is the Hamiltonian and ET is a trial energy, with initial con-
dition ψ(R, 0) = ΨT(R) and converging exponentially to the exact
ground state Φ(R) for t → ∞. Thus, limt→∞f (R, t) = ΨT(R)Φ(R).
Since Φ is an eigenstate for Ĥ, the ground state energy E0 can be
calculated using the mixed estimator,

E0 = �Φ�Ĥ�ΨT��Φ�ΨT� = ∫
Φ(R)ΨT(R)EL(R)dR
∫ Φ(R)ΨT(R)dR , (2)

where EL(R) = �R�Ĥ�ΨT��R�ΨT� is the local energy in the electronic configu-
ration R for the trial wave function ΨT .

The time evolution of f (R, t) follows from the imaginary time
Schödinger equation (1), which in the integral form leads to

f �R′, t + τ� = � G�R′ ← R, τ�f (R, t)dR, (3)

where τ is the time step and G(R′ ← R, τ) is the Green function for
the importance sampling, which is defined (symbolically) as

G(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′� exp(−τĤ)�R�. (4)

Thus, by starting from f (R, 0) = ΨT(R)2 and performing an evolu-
tion according to the Green function G(R′ ← R, t), we are able to
assess expectation values of the exact ground state Φ,

Φ(R′)ΨT(R′) = lim
t→∞� G(R′ ← R, t)ΨT(R)2dR. (5)

This is the process implemented in the DMC algorithm. In fermionic
systems, the fixed-node (FN) approximation is typically introduced,
so the FN Hamiltonian ĤFN ≡ Ĥ + V̂FN , where V̂FN is an infinite wall
at the nodal surface of ΨT , is used. Further details are reported in
Appendix A.

TheHamiltonian Ĥ is the sum of the kinetic and potential oper-
ators K̂ and V̂ , respectively. In all-electron calculations, the poten-
tial operator V̂ is local, V̂ = V̂L. However, in general, there is the
need to deploy pseudopotentials to represent the core electrons of
the atoms and reduce the computational cost of the calculation, see
Appendix B. In this case, the potential term has both local and non-
local operators: V̂ = V̂L + V̂NL. The presence of nonlocal operators in
the potential complicates the formulation of the DMC algorithm and
forces the introduction of a further approximation. In the following,
we will first consider the simple case of a potential with only local
operators, Sec. II C, and later we will consider the case of potential
term with nonlocal operators, Sec. II D.

C. Green’s function for Ĥ = K̂ + V̂L

The simplest case is when the Hamiltonian has only a local
potential term; thus, it can be written as Ĥ = K̂ + V̂L, with
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The trial wave function has a critical role in determining the

accuracy of FN-DMC. A QMC trial wave function is the product
ΨT(R) = D(R) ∗ expJ(R) of an antisymmetric function D(R)
and a symmetric (bosonic) function expJ(R), called the Jastrow
factor, where R is the electronic configuration. The function D(R)
is typically a single Slater determinant, especially when large systems
are simulated. However, it is worth mentioning that if the system
under consideration is not too large (say, generally not more than a
few atoms) better functions can be used, such as multideterminant
expansions of Slater determinants,34–39 valence-bond wave func-
tions,40 the antisymmetrized geminal product,41,42 the Pfaffian,43
and others (see, for instance, the review by Austin et al.44). More-
over, the backflow transformation45–47 can be employed to further
improve any of the aforementioned ansätze, at the price of a signif-
icantly larger computational cost. The Jastrow factor describes the
dynamical correlation between the electrons, by including explicit
functions of the electron-electron distances. In DMC, a property of
interest is the nodal surface of ΨT , which is the hypersurface cor-
responding to ΨT(R) = 0, for real wave functions, or the complex
phase of ΨT for complex wave functions. They are both determined
by D(R) as the Jastrow factor can only alter the amplitude of ΨT .
The Jastrow factor J is implemented differently in different QMC
packages.

When large and complex systems are simulated, such as
adsorption on surfaces or molecular crystals, the most common
practice is to obtain D from a deterministic approach, usually DFT,
and to decide a functional form for J and optimize, within the
variational Monte Carlo (VMC) scheme,1 the parameters minimiz-
ing either the energy or the variance. Since D comes from a deter-
ministic method, there is no reproducibility problem here, and in
taking energy differences we can usually expect a large cancella-
tion of the FN error. On the other hand, J is optimized stochas-
tically, so its parameters are affected by an optimization uncer-
tainty. Dealing with this uncertainty becomes increasingly challeng-
ing as the system gets larger. Moreover, a new optimization of J

is needed for every distinct orientation of the molecular systems,
and optimizing J so frequently is tedious and time-consuming,
and, due to the stochastic nature of the optimization procedure,
can lead to Jastrow factors of different qualities, resulting in less
than optimal cancellation of errors. A human supervision of the
optimization is always highly recommended, if not necessary. The
optimization is responsible for making QMC labor intense and
nonautomatic.

B. Diffusion Monte Carlo
The DMC algorithm with importance sampling performs

a time evolution of f (R, t) = ΨT(R)ψ(R, t), where ΨT(R)
is a trial wave function (described in Sec. II A), R are the

3N-dimensional electronic coordinates, and ψ(R, t) is the solution
at time t of the imaginary time Schödinger equation,

− @

@t
ψ(R, t) = �Ĥ − ET�ψ(R, t), (1)

where Ĥ is the Hamiltonian and ET is a trial energy, with initial con-
dition ψ(R, 0) = ΨT(R) and converging exponentially to the exact
ground state Φ(R) for t → ∞. Thus, limt→∞f (R, t) = ΨT(R)Φ(R).
Since Φ is an eigenstate for Ĥ, the ground state energy E0 can be
calculated using the mixed estimator,

E0 = �Φ�Ĥ�ΨT��Φ�ΨT� = ∫
Φ(R)ΨT(R)EL(R)dR
∫ Φ(R)ΨT(R)dR , (2)

where EL(R) = �R�Ĥ�ΨT��R�ΨT� is the local energy in the electronic configu-
ration R for the trial wave function ΨT .

The time evolution of f (R, t) follows from the imaginary time
Schödinger equation (1), which in the integral form leads to

f �R′, t + τ� = � G�R′ ← R, τ�f (R, t)dR, (3)

where τ is the time step and G(R′ ← R, τ) is the Green function for
the importance sampling, which is defined (symbolically) as

G(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′� exp(−τĤ)�R�. (4)

Thus, by starting from f (R, 0) = ΨT(R)2 and performing an evolu-
tion according to the Green function G(R′ ← R, t), we are able to
assess expectation values of the exact ground state Φ,

Φ(R′)ΨT(R′) = lim
t→∞� G(R′ ← R, t)ΨT(R)2dR. (5)

This is the process implemented in the DMC algorithm. In fermionic
systems, the fixed-node (FN) approximation is typically introduced,
so the FN Hamiltonian ĤFN ≡ Ĥ + V̂FN , where V̂FN is an infinite wall
at the nodal surface of ΨT , is used. Further details are reported in
Appendix A.

TheHamiltonian Ĥ is the sum of the kinetic and potential oper-
ators K̂ and V̂ , respectively. In all-electron calculations, the poten-
tial operator V̂ is local, V̂ = V̂L. However, in general, there is the
need to deploy pseudopotentials to represent the core electrons of
the atoms and reduce the computational cost of the calculation, see
Appendix B. In this case, the potential term has both local and non-
local operators: V̂ = V̂L + V̂NL. The presence of nonlocal operators in
the potential complicates the formulation of the DMC algorithm and
forces the introduction of a further approximation. In the following,
we will first consider the simple case of a potential with only local
operators, Sec. II C, and later we will consider the case of potential
term with nonlocal operators, Sec. II D.

C. Green’s function for Ĥ = K̂ + V̂L

The simplest case is when the Hamiltonian has only a local
potential term; thus, it can be written as Ĥ = K̂ + V̂L, with
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ionization energies (Sec. IV B), stability (Sec. IV C), and efficiency
(Sec. IV D). A reader already familiar with DMC can skip to Sec. III.
We draw our final conclusions in Sec. V.

II. OVERVIEW ON FIXED NODE DIFFUSION
MONTE CARLO
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phase of ΨT for complex wave functions. They are both determined
by D(R) as the Jastrow factor can only alter the amplitude of ΨT .
The Jastrow factor J is implemented differently in different QMC
packages.

When large and complex systems are simulated, such as
adsorption on surfaces or molecular crystals, the most common
practice is to obtain D from a deterministic approach, usually DFT,
and to decide a functional form for J and optimize, within the
variational Monte Carlo (VMC) scheme,1 the parameters minimiz-
ing either the energy or the variance. Since D comes from a deter-
ministic method, there is no reproducibility problem here, and in
taking energy differences we can usually expect a large cancella-
tion of the FN error. On the other hand, J is optimized stochas-
tically, so its parameters are affected by an optimization uncer-
tainty. Dealing with this uncertainty becomes increasingly challeng-
ing as the system gets larger. Moreover, a new optimization of J

is needed for every distinct orientation of the molecular systems,
and optimizing J so frequently is tedious and time-consuming,
and, due to the stochastic nature of the optimization procedure,
can lead to Jastrow factors of different qualities, resulting in less
than optimal cancellation of errors. A human supervision of the
optimization is always highly recommended, if not necessary. The
optimization is responsible for making QMC labor intense and
nonautomatic.

B. Diffusion Monte Carlo
The DMC algorithm with importance sampling performs

a time evolution of f (R, t) = ΨT(R)ψ(R, t), where ΨT(R)
is a trial wave function (described in Sec. II A), R are the

3N-dimensional electronic coordinates, and ψ(R, t) is the solution
at time t of the imaginary time Schödinger equation,
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where Ĥ is the Hamiltonian and ET is a trial energy, with initial con-
dition ψ(R, 0) = ΨT(R) and converging exponentially to the exact
ground state Φ(R) for t → ∞. Thus, limt→∞f (R, t) = ΨT(R)Φ(R).
Since Φ is an eigenstate for Ĥ, the ground state energy E0 can be
calculated using the mixed estimator,

E0 = �Φ�Ĥ�ΨT��Φ�ΨT� = ∫
Φ(R)ΨT(R)EL(R)dR
∫ Φ(R)ΨT(R)dR , (2)

where EL(R) = �R�Ĥ�ΨT��R�ΨT� is the local energy in the electronic configu-
ration R for the trial wave function ΨT .

The time evolution of f (R, t) follows from the imaginary time
Schödinger equation (1), which in the integral form leads to

f �R′, t + τ� = � G�R′ ← R, τ�f (R, t)dR, (3)

where τ is the time step and G(R′ ← R, τ) is the Green function for
the importance sampling, which is defined (symbolically) as

G(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′� exp(−τĤ)�R�. (4)

Thus, by starting from f (R, 0) = ΨT(R)2 and performing an evolu-
tion according to the Green function G(R′ ← R, t), we are able to
assess expectation values of the exact ground state Φ,

Φ(R′)ΨT(R′) = lim
t→∞� G(R′ ← R, t)ΨT(R)2dR. (5)

This is the process implemented in the DMC algorithm. In fermionic
systems, the fixed-node (FN) approximation is typically introduced,
so the FN Hamiltonian ĤFN ≡ Ĥ + V̂FN , where V̂FN is an infinite wall
at the nodal surface of ΨT , is used. Further details are reported in
Appendix A.

TheHamiltonian Ĥ is the sum of the kinetic and potential oper-
ators K̂ and V̂ , respectively. In all-electron calculations, the poten-
tial operator V̂ is local, V̂ = V̂L. However, in general, there is the
need to deploy pseudopotentials to represent the core electrons of
the atoms and reduce the computational cost of the calculation, see
Appendix B. In this case, the potential term has both local and non-
local operators: V̂ = V̂L + V̂NL. The presence of nonlocal operators in
the potential complicates the formulation of the DMC algorithm and
forces the introduction of a further approximation. In the following,
we will first consider the simple case of a potential with only local
operators, Sec. II C, and later we will consider the case of potential
term with nonlocal operators, Sec. II D.

C. Green’s function for Ĥ = K̂ + V̂L

The simplest case is when the Hamiltonian has only a local
potential term; thus, it can be written as Ĥ = K̂ + V̂L, with
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K̂ = − 1
2∇2. By substitution in the imaginary time Schrödinger

equation [Eq. (1)], multiplication by ΨT(R), and some algebraic
operations, we obtain

@

@t
f (R, t) = 1

2
∇2f (R, t) −∇ ⋅ (V(R)f (R, t))
− [EL(R) − ET] f (R, t), (6)

where V(R) = ∇ log�ΨT(R)�. Thus, the time evolution of f (R, t)
is given on the right-hand side (RHS) of Eq. (6). If the RHS only
had the first two terms, we would have a pure drift-diffusion pro-
cess, having a Green’s function that for a small time step τ and
for N electrons in the system can be approximated as GDD(R′
← R, τ) = 1(2πτ)3 N�2 exp�− [R′−R−τV(R)]22τ �. The last term on the RHS
of Eq. (6) is the branching term, and its associated Green’s function
is GB(R′ ← R, τ) = exp�−τ EL(R′)+EL(R)−2ET

2 �. Green’s function of
f (R, t) for a small time interval τ can be approximated48,49 as

GBDD(R′ ← R, τ) ≈ GB(R′ ← R, τ)GDD(R′ ← R, τ), (7)

which is exact for τ → 0. GBDD(R′ ← R, τ) can be used to approx-
imate Green’s function for an arbitrarily large time interval t.50
GBDD defines a branching-drift-diffusion process, as described, for
instance, in Ref. 1. The algorithms implemented in QMC packages
are usually a little more involved.51,110,111 However, there is no need
here to complicate further the picture.Wewill be concerned with the
results of DMC in the continuous limit τ → 0. In this limit, the only
bias in the DMC energy evaluation EFN is given by the FN approxi-
mation. In particular, EFN ≥ E0, with the equality reached if the nodes
of ΨT are exact.

D. Green’s function for Ĥ = K̂ + V̂L + V̂NL

When pseudopotentials are used, the potential term has non-
local operators V̂NL, and the Hamiltonian can be written as
Ĥ = K̂ + V̂L + V̂NL. If we consider the imaginary time Schrödinger
equation (1) and substitute Ĥ, we obtain the following time evolu-
tion of f (R, t):

@

@t
f (R, t) = 1

2
∇2f (R, t) −∇ ⋅ (V(R)f (R, t))
−�����
�K̂ + V̂L�ΨT(R)

ΨT(R) +
V̂NLψ(R, t)
ψ(R, t) − ET����� f (R, t). (8)

The drift and diffusion terms on the RHS are identical to Eq. (6), but
there is a complication in the branching term. Indeed, we cannot
calculate V̂NLψ(R,t)

ψ(R,t) , as we do not know the analytical form of ψ(R, t).
There is an alternative approach, which is to write the Green’s

function G(R′ ← R, τ) for Ĥ. Using the Zassenhaus formula, for
small τ, we can approximate e−τ(K̂+V̂L+V̂NL) with e−τV̂NL e−τ(K̂+V̂L), and
by substituting it into Eq. (4), we obtain

G(R′ ← R, τ) ∼ � TNL(R′ ← R̃, τ)∗GL(R̃← R, τ)dR̃, (9)

where GL(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′�e−τ(K̂+V̂L)�R� is Green’s function

for the local part of the Hamiltonian, which has been discussed in
Sec. II C, and TNL(R′ ← R, τ) ≡ ΨT(R′)

ΨT(R) �R′�e−τV̂NL �R� is Green’s

function of the nonlocal part of the potential. For small τ, we have
that TNL(R′ ← R, τ) ∼ δR′ ,R − τVR′ ,R, where δR′ ,R is the Dirac’s delta
and

VR′ ,R ≡ ΨT(R′)
ΨT(R) �R′�V̂NL�R�. (10)

Notice that VR′ ,R can be either positive or negative depending on
ΨT , V̂NL, R, and R′. Whenever VR′ ,R > 0 for some R′ ≠ R, then
TNL(R′ ← R, τ) < 0. The DMC algorithm needs to interpret the
Green’s function as a transition probability, but if TNL(R′ ← R, τ)< 0 for some R and R′, it cannot be a transition probability from R
to R′ (sign problem). Thus, the presence of V̂NL yields a sign prob-
lem in the DMC algorithm29,31 because it gives a Green’s function
G(R′ ← R, τ) which can have negative terms.

There is no direct solution to this problem, and as a con-
sequence, an approximation is introduced. As noted earlier, two
approaches are available: either to use the locality approximation
(LA)30 or Casula’s T-move approximation (TM).29,31 They are sum-
marized in Secs. II D 1 and II D 2.

1. Locality approximation in FN-DMC
The approach taken in LA is to approximate the unknown

quantity V̂NLΦ(R,t)
Φ(R,t) with V̂NLΨT(R)

ΨT(R) , which is the value of the nonlo-
cal potential localized on the trial wave function ΨT(R). By using
this approximation in Eq. (8), we obtain that the 3rd term on the
RHS is −[EL(R) − ET]f (R, t), and the equation becomes identical
to Eq. (6). Thus, Green’s function in LA is given by Eq. (7) and the
DMC algorithm is a branching-drift-diffusion process.

The major difference from Sec. II C is that we approximate
the Hamiltonian, which is no longer given by the FN Hamiltonian
ĤFN ≡ Ĥ + V̂FN , but by

ĤLA
FN ≡ K̂ + V̂L +

V̂NLΨT

ΨT
+ V̂FN , (11)

where the notation V̂NLΨT
ΨT

is used to indicate that the non-
local potential V̂NL has been localized using the function
ΨT(R). So, given a generic function ξ(R), we have V̂NLΨT

ΨT
ξ(R)

= ∫ dR′ΨT(R′)�R′�V̂NL�R� ξ(R)
ΨT(R) . Notice that ĤLA

FN has no nonlocal
potential term, i.e., the action of ĤLA

FN on the generic function ξ at
point R only depends on the value of ξ at R.

The ground state for ĤLA
FN is the projected wave function ΦLA

FN .
The expectation value of the energy ELA

FN can be evaluated using the
mixed estimator because V̂NLΨT

ΨT
ΨT(R) = V̂NLΨT(R), so ĤLA

FN �ΨT�= Ĥ�ΨT�. However, in general ΦLA
FN is different from the (unknown)

ground state ΦFN for ĤFN ; thus, ELA
FN ≠ EFN . In other words, with

LA we have lost the variationality of the approach because the error
introduced by this approximation can either be positive or nega-
tive, and ELA

FN is not, in general, an upper bound for E0. Only in
the (ideal) case of ΨT = ΦFN , we do have ĤLA

FN �ΦFN� = EFN �ΦFN�,
so ELA

FN = EFN . As a corollary, with the exact trial wave function,
ΨT = Φ, then we have that ELA

FN = E0. However, the trial wave
function having exact nodes is not a sufficient condition for having
ELA
FN = E0 as the LA depends on the overall trial wave functionΨT and

not just on its nodes.52 In other words, ELA
FN has both a FN error and a
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K̂ = − 1
2∇2. By substitution in the imaginary time Schrödinger

equation [Eq. (1)], multiplication by ΨT(R), and some algebraic
operations, we obtain

@

@t
f (R, t) = 1

2
∇2f (R, t) −∇ ⋅ (V(R)f (R, t))
− [EL(R) − ET] f (R, t), (6)

where V(R) = ∇ log�ΨT(R)�. Thus, the time evolution of f (R, t)
is given on the right-hand side (RHS) of Eq. (6). If the RHS only
had the first two terms, we would have a pure drift-diffusion pro-
cess, having a Green’s function that for a small time step τ and
for N electrons in the system can be approximated as GDD(R′
← R, τ) = 1(2πτ)3 N�2 exp�− [R′−R−τV(R)]22τ �. The last term on the RHS
of Eq. (6) is the branching term, and its associated Green’s function
is GB(R′ ← R, τ) = exp�−τ EL(R′)+EL(R)−2ET

2 �. Green’s function of
f (R, t) for a small time interval τ can be approximated48,49 as

GBDD(R′ ← R, τ) ≈ GB(R′ ← R, τ)GDD(R′ ← R, τ), (7)

which is exact for τ → 0. GBDD(R′ ← R, τ) can be used to approx-
imate Green’s function for an arbitrarily large time interval t.50
GBDD defines a branching-drift-diffusion process, as described, for
instance, in Ref. 1. The algorithms implemented in QMC packages
are usually a little more involved.51,110,111 However, there is no need
here to complicate further the picture.Wewill be concerned with the
results of DMC in the continuous limit τ → 0. In this limit, the only
bias in the DMC energy evaluation EFN is given by the FN approxi-
mation. In particular, EFN ≥ E0, with the equality reached if the nodes
of ΨT are exact.

D. Green’s function for Ĥ = K̂ + V̂L + V̂NL

When pseudopotentials are used, the potential term has non-
local operators V̂NL, and the Hamiltonian can be written as
Ĥ = K̂ + V̂L + V̂NL. If we consider the imaginary time Schrödinger
equation (1) and substitute Ĥ, we obtain the following time evolu-
tion of f (R, t):
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�K̂ + V̂L�ΨT(R)

ΨT(R) +
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ψ(R, t) − ET����� f (R, t). (8)

The drift and diffusion terms on the RHS are identical to Eq. (6), but
there is a complication in the branching term. Indeed, we cannot
calculate V̂NLψ(R,t)

ψ(R,t) , as we do not know the analytical form of ψ(R, t).
There is an alternative approach, which is to write the Green’s

function G(R′ ← R, τ) for Ĥ. Using the Zassenhaus formula, for
small τ, we can approximate e−τ(K̂+V̂L+V̂NL) with e−τV̂NL e−τ(K̂+V̂L), and
by substituting it into Eq. (4), we obtain

G(R′ ← R, τ) ∼ � TNL(R′ ← R̃, τ)∗GL(R̃← R, τ)dR̃, (9)

where GL(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′�e−τ(K̂+V̂L)�R� is Green’s function

for the local part of the Hamiltonian, which has been discussed in
Sec. II C, and TNL(R′ ← R, τ) ≡ ΨT(R′)

ΨT(R) �R′�e−τV̂NL �R� is Green’s

function of the nonlocal part of the potential. For small τ, we have
that TNL(R′ ← R, τ) ∼ δR′ ,R − τVR′ ,R, where δR′ ,R is the Dirac’s delta
and

VR′ ,R ≡ ΨT(R′)
ΨT(R) �R′�V̂NL�R�. (10)

Notice that VR′ ,R can be either positive or negative depending on
ΨT , V̂NL, R, and R′. Whenever VR′ ,R > 0 for some R′ ≠ R, then
TNL(R′ ← R, τ) < 0. The DMC algorithm needs to interpret the
Green’s function as a transition probability, but if TNL(R′ ← R, τ)< 0 for some R and R′, it cannot be a transition probability from R
to R′ (sign problem). Thus, the presence of V̂NL yields a sign prob-
lem in the DMC algorithm29,31 because it gives a Green’s function
G(R′ ← R, τ) which can have negative terms.

There is no direct solution to this problem, and as a con-
sequence, an approximation is introduced. As noted earlier, two
approaches are available: either to use the locality approximation
(LA)30 or Casula’s T-move approximation (TM).29,31 They are sum-
marized in Secs. II D 1 and II D 2.

1. Locality approximation in FN-DMC
The approach taken in LA is to approximate the unknown

quantity V̂NLΦ(R,t)
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ΨT(R) , which is the value of the nonlo-
cal potential localized on the trial wave function ΨT(R). By using
this approximation in Eq. (8), we obtain that the 3rd term on the
RHS is −[EL(R) − ET]f (R, t), and the equation becomes identical
to Eq. (6). Thus, Green’s function in LA is given by Eq. (7) and the
DMC algorithm is a branching-drift-diffusion process.

The major difference from Sec. II C is that we approximate
the Hamiltonian, which is no longer given by the FN Hamiltonian
ĤFN ≡ Ĥ + V̂FN , but by

ĤLA
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+ V̂FN , (11)

where the notation V̂NLΨT
ΨT

is used to indicate that the non-
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ΨT(R) . Notice that ĤLA
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potential term, i.e., the action of ĤLA
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FN is the projected wave function ΦLA
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The expectation value of the energy ELA

FN can be evaluated using the
mixed estimator because V̂NLΨT
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FN �ΨT�= Ĥ�ΨT�. However, in general ΦLA
FN is different from the (unknown)

ground state ΦFN for ĤFN ; thus, ELA
FN ≠ EFN . In other words, with

LA we have lost the variationality of the approach because the error
introduced by this approximation can either be positive or nega-
tive, and ELA

FN is not, in general, an upper bound for E0. Only in
the (ideal) case of ΨT = ΦFN , we do have ĤLA

FN �ΦFN� = EFN �ΦFN�,
so ELA

FN = EFN . As a corollary, with the exact trial wave function,
ΨT = Φ, then we have that ELA

FN = E0. However, the trial wave
function having exact nodes is not a sufficient condition for having
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FN = E0 as the LA depends on the overall trial wave functionΨT and
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K̂ = − 1
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equation [Eq. (1)], multiplication by ΨT(R), and some algebraic
operations, we obtain
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where V(R) = ∇ log�ΨT(R)�. Thus, the time evolution of f (R, t)
is given on the right-hand side (RHS) of Eq. (6). If the RHS only
had the first two terms, we would have a pure drift-diffusion pro-
cess, having a Green’s function that for a small time step τ and
for N electrons in the system can be approximated as GDD(R′
← R, τ) = 1(2πτ)3 N�2 exp�− [R′−R−τV(R)]22τ �. The last term on the RHS
of Eq. (6) is the branching term, and its associated Green’s function
is GB(R′ ← R, τ) = exp�−τ EL(R′)+EL(R)−2ET

2 �. Green’s function of
f (R, t) for a small time interval τ can be approximated48,49 as

GBDD(R′ ← R, τ) ≈ GB(R′ ← R, τ)GDD(R′ ← R, τ), (7)

which is exact for τ → 0. GBDD(R′ ← R, τ) can be used to approx-
imate Green’s function for an arbitrarily large time interval t.50
GBDD defines a branching-drift-diffusion process, as described, for
instance, in Ref. 1. The algorithms implemented in QMC packages
are usually a little more involved.51,110,111 However, there is no need
here to complicate further the picture.Wewill be concerned with the
results of DMC in the continuous limit τ → 0. In this limit, the only
bias in the DMC energy evaluation EFN is given by the FN approxi-
mation. In particular, EFN ≥ E0, with the equality reached if the nodes
of ΨT are exact.

D. Green’s function for Ĥ = K̂ + V̂L + V̂NL

When pseudopotentials are used, the potential term has non-
local operators V̂NL, and the Hamiltonian can be written as
Ĥ = K̂ + V̂L + V̂NL. If we consider the imaginary time Schrödinger
equation (1) and substitute Ĥ, we obtain the following time evolu-
tion of f (R, t):

@

@t
f (R, t) = 1

2
∇2f (R, t) −∇ ⋅ (V(R)f (R, t))
−�����
�K̂ + V̂L�ΨT(R)

ΨT(R) +
V̂NLψ(R, t)
ψ(R, t) − ET����� f (R, t). (8)

The drift and diffusion terms on the RHS are identical to Eq. (6), but
there is a complication in the branching term. Indeed, we cannot
calculate V̂NLψ(R,t)

ψ(R,t) , as we do not know the analytical form of ψ(R, t).
There is an alternative approach, which is to write the Green’s

function G(R′ ← R, τ) for Ĥ. Using the Zassenhaus formula, for
small τ, we can approximate e−τ(K̂+V̂L+V̂NL) with e−τV̂NL e−τ(K̂+V̂L), and
by substituting it into Eq. (4), we obtain

G(R′ ← R, τ) ∼ � TNL(R′ ← R̃, τ)∗GL(R̃← R, τ)dR̃, (9)

where GL(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′�e−τ(K̂+V̂L)�R� is Green’s function

for the local part of the Hamiltonian, which has been discussed in
Sec. II C, and TNL(R′ ← R, τ) ≡ ΨT(R′)

ΨT(R) �R′�e−τV̂NL �R� is Green’s

function of the nonlocal part of the potential. For small τ, we have
that TNL(R′ ← R, τ) ∼ δR′ ,R − τVR′ ,R, where δR′ ,R is the Dirac’s delta
and

VR′ ,R ≡ ΨT(R′)
ΨT(R) �R′�V̂NL�R�. (10)

Notice that VR′ ,R can be either positive or negative depending on
ΨT , V̂NL, R, and R′. Whenever VR′ ,R > 0 for some R′ ≠ R, then
TNL(R′ ← R, τ) < 0. The DMC algorithm needs to interpret the
Green’s function as a transition probability, but if TNL(R′ ← R, τ)< 0 for some R and R′, it cannot be a transition probability from R
to R′ (sign problem). Thus, the presence of V̂NL yields a sign prob-
lem in the DMC algorithm29,31 because it gives a Green’s function
G(R′ ← R, τ) which can have negative terms.

There is no direct solution to this problem, and as a con-
sequence, an approximation is introduced. As noted earlier, two
approaches are available: either to use the locality approximation
(LA)30 or Casula’s T-move approximation (TM).29,31 They are sum-
marized in Secs. II D 1 and II D 2.

1. Locality approximation in FN-DMC
The approach taken in LA is to approximate the unknown

quantity V̂NLΦ(R,t)
Φ(R,t) with V̂NLΨT(R)

ΨT(R) , which is the value of the nonlo-
cal potential localized on the trial wave function ΨT(R). By using
this approximation in Eq. (8), we obtain that the 3rd term on the
RHS is −[EL(R) − ET]f (R, t), and the equation becomes identical
to Eq. (6). Thus, Green’s function in LA is given by Eq. (7) and the
DMC algorithm is a branching-drift-diffusion process.

The major difference from Sec. II C is that we approximate
the Hamiltonian, which is no longer given by the FN Hamiltonian
ĤFN ≡ Ĥ + V̂FN , but by

ĤLA
FN ≡ K̂ + V̂L +

V̂NLΨT

ΨT
+ V̂FN , (11)

where the notation V̂NLΨT
ΨT

is used to indicate that the non-
local potential V̂NL has been localized using the function
ΨT(R). So, given a generic function ξ(R), we have V̂NLΨT

ΨT
ξ(R)

= ∫ dR′ΨT(R′)�R′�V̂NL�R� ξ(R)
ΨT(R) . Notice that ĤLA

FN has no nonlocal
potential term, i.e., the action of ĤLA

FN on the generic function ξ at
point R only depends on the value of ξ at R.

The ground state for ĤLA
FN is the projected wave function ΦLA

FN .
The expectation value of the energy ELA

FN can be evaluated using the
mixed estimator because V̂NLΨT

ΨT
ΨT(R) = V̂NLΨT(R), so ĤLA

FN �ΨT�= Ĥ�ΨT�. However, in general ΦLA
FN is different from the (unknown)

ground state ΦFN for ĤFN ; thus, ELA
FN ≠ EFN . In other words, with

LA we have lost the variationality of the approach because the error
introduced by this approximation can either be positive or nega-
tive, and ELA

FN is not, in general, an upper bound for E0. Only in
the (ideal) case of ΨT = ΦFN , we do have ĤLA

FN �ΦFN� = EFN �ΦFN�,
so ELA

FN = EFN . As a corollary, with the exact trial wave function,
ΨT = Φ, then we have that ELA

FN = E0. However, the trial wave
function having exact nodes is not a sufficient condition for having
ELA
FN = E0 as the LA depends on the overall trial wave functionΨT and

not just on its nodes.52 In other words, ELA
FN has both a FN error and a
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K̂ = − 1
2∇2. By substitution in the imaginary time Schrödinger

equation [Eq. (1)], multiplication by ΨT(R), and some algebraic
operations, we obtain

@

@t
f (R, t) = 1

2
∇2f (R, t) −∇ ⋅ (V(R)f (R, t))
− [EL(R) − ET] f (R, t), (6)

where V(R) = ∇ log�ΨT(R)�. Thus, the time evolution of f (R, t)
is given on the right-hand side (RHS) of Eq. (6). If the RHS only
had the first two terms, we would have a pure drift-diffusion pro-
cess, having a Green’s function that for a small time step τ and
for N electrons in the system can be approximated as GDD(R′
← R, τ) = 1(2πτ)3 N�2 exp�− [R′−R−τV(R)]22τ �. The last term on the RHS
of Eq. (6) is the branching term, and its associated Green’s function
is GB(R′ ← R, τ) = exp�−τ EL(R′)+EL(R)−2ET

2 �. Green’s function of
f (R, t) for a small time interval τ can be approximated48,49 as

GBDD(R′ ← R, τ) ≈ GB(R′ ← R, τ)GDD(R′ ← R, τ), (7)

which is exact for τ → 0. GBDD(R′ ← R, τ) can be used to approx-
imate Green’s function for an arbitrarily large time interval t.50
GBDD defines a branching-drift-diffusion process, as described, for
instance, in Ref. 1. The algorithms implemented in QMC packages
are usually a little more involved.51,110,111 However, there is no need
here to complicate further the picture.Wewill be concerned with the
results of DMC in the continuous limit τ → 0. In this limit, the only
bias in the DMC energy evaluation EFN is given by the FN approxi-
mation. In particular, EFN ≥ E0, with the equality reached if the nodes
of ΨT are exact.

D. Green’s function for Ĥ = K̂ + V̂L + V̂NL

When pseudopotentials are used, the potential term has non-
local operators V̂NL, and the Hamiltonian can be written as
Ĥ = K̂ + V̂L + V̂NL. If we consider the imaginary time Schrödinger
equation (1) and substitute Ĥ, we obtain the following time evolu-
tion of f (R, t):
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f (R, t) = 1

2
∇2f (R, t) −∇ ⋅ (V(R)f (R, t))
−�����
�K̂ + V̂L�ΨT(R)

ΨT(R) +
V̂NLψ(R, t)
ψ(R, t) − ET����� f (R, t). (8)

The drift and diffusion terms on the RHS are identical to Eq. (6), but
there is a complication in the branching term. Indeed, we cannot
calculate V̂NLψ(R,t)

ψ(R,t) , as we do not know the analytical form of ψ(R, t).
There is an alternative approach, which is to write the Green’s

function G(R′ ← R, τ) for Ĥ. Using the Zassenhaus formula, for
small τ, we can approximate e−τ(K̂+V̂L+V̂NL) with e−τV̂NL e−τ(K̂+V̂L), and
by substituting it into Eq. (4), we obtain

G(R′ ← R, τ) ∼ � TNL(R′ ← R̃, τ)∗GL(R̃← R, τ)dR̃, (9)

where GL(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′�e−τ(K̂+V̂L)�R� is Green’s function

for the local part of the Hamiltonian, which has been discussed in
Sec. II C, and TNL(R′ ← R, τ) ≡ ΨT(R′)

ΨT(R) �R′�e−τV̂NL �R� is Green’s

function of the nonlocal part of the potential. For small τ, we have
that TNL(R′ ← R, τ) ∼ δR′ ,R − τVR′ ,R, where δR′ ,R is the Dirac’s delta
and

VR′ ,R ≡ ΨT(R′)
ΨT(R) �R′�V̂NL�R�. (10)

Notice that VR′ ,R can be either positive or negative depending on
ΨT , V̂NL, R, and R′. Whenever VR′ ,R > 0 for some R′ ≠ R, then
TNL(R′ ← R, τ) < 0. The DMC algorithm needs to interpret the
Green’s function as a transition probability, but if TNL(R′ ← R, τ)< 0 for some R and R′, it cannot be a transition probability from R
to R′ (sign problem). Thus, the presence of V̂NL yields a sign prob-
lem in the DMC algorithm29,31 because it gives a Green’s function
G(R′ ← R, τ) which can have negative terms.

There is no direct solution to this problem, and as a con-
sequence, an approximation is introduced. As noted earlier, two
approaches are available: either to use the locality approximation
(LA)30 or Casula’s T-move approximation (TM).29,31 They are sum-
marized in Secs. II D 1 and II D 2.

1. Locality approximation in FN-DMC
The approach taken in LA is to approximate the unknown

quantity V̂NLΦ(R,t)
Φ(R,t) with V̂NLΨT(R)

ΨT(R) , which is the value of the nonlo-
cal potential localized on the trial wave function ΨT(R). By using
this approximation in Eq. (8), we obtain that the 3rd term on the
RHS is −[EL(R) − ET]f (R, t), and the equation becomes identical
to Eq. (6). Thus, Green’s function in LA is given by Eq. (7) and the
DMC algorithm is a branching-drift-diffusion process.

The major difference from Sec. II C is that we approximate
the Hamiltonian, which is no longer given by the FN Hamiltonian
ĤFN ≡ Ĥ + V̂FN , but by

ĤLA
FN ≡ K̂ + V̂L +

V̂NLΨT

ΨT
+ V̂FN , (11)

where the notation V̂NLΨT
ΨT

is used to indicate that the non-
local potential V̂NL has been localized using the function
ΨT(R). So, given a generic function ξ(R), we have V̂NLΨT

ΨT
ξ(R)

= ∫ dR′ΨT(R′)�R′�V̂NL�R� ξ(R)
ΨT(R) . Notice that ĤLA

FN has no nonlocal
potential term, i.e., the action of ĤLA

FN on the generic function ξ at
point R only depends on the value of ξ at R.

The ground state for ĤLA
FN is the projected wave function ΦLA

FN .
The expectation value of the energy ELA

FN can be evaluated using the
mixed estimator because V̂NLΨT

ΨT
ΨT(R) = V̂NLΨT(R), so ĤLA

FN �ΨT�= Ĥ�ΨT�. However, in general ΦLA
FN is different from the (unknown)

ground state ΦFN for ĤFN ; thus, ELA
FN ≠ EFN . In other words, with

LA we have lost the variationality of the approach because the error
introduced by this approximation can either be positive or nega-
tive, and ELA

FN is not, in general, an upper bound for E0. Only in
the (ideal) case of ΨT = ΦFN , we do have ĤLA

FN �ΦFN� = EFN �ΦFN�,
so ELA

FN = EFN . As a corollary, with the exact trial wave function,
ΨT = Φ, then we have that ELA

FN = E0. However, the trial wave
function having exact nodes is not a sufficient condition for having
ELA
FN = E0 as the LA depends on the overall trial wave functionΨT and

not just on its nodes.52 In other words, ELA
FN has both a FN error and a
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ionization energies (Sec. IV B), stability (Sec. IV C), and efficiency
(Sec. IV D). A reader already familiar with DMC can skip to Sec. III.
We draw our final conclusions in Sec. V.

II. OVERVIEW ON FIXED NODE DIFFUSION
MONTE CARLO

A. The trial wave function
The trial wave function has a critical role in determining the

accuracy of FN-DMC. A QMC trial wave function is the product
ΨT(R) = D(R) ∗ expJ(R) of an antisymmetric function D(R)
and a symmetric (bosonic) function expJ(R), called the Jastrow
factor, where R is the electronic configuration. The function D(R)
is typically a single Slater determinant, especially when large systems
are simulated. However, it is worth mentioning that if the system
under consideration is not too large (say, generally not more than a
few atoms) better functions can be used, such as multideterminant
expansions of Slater determinants,34–39 valence-bond wave func-
tions,40 the antisymmetrized geminal product,41,42 the Pfaffian,43
and others (see, for instance, the review by Austin et al.44). More-
over, the backflow transformation45–47 can be employed to further
improve any of the aforementioned ansätze, at the price of a signif-
icantly larger computational cost. The Jastrow factor describes the
dynamical correlation between the electrons, by including explicit
functions of the electron-electron distances. In DMC, a property of
interest is the nodal surface of ΨT , which is the hypersurface cor-
responding to ΨT(R) = 0, for real wave functions, or the complex
phase of ΨT for complex wave functions. They are both determined
by D(R) as the Jastrow factor can only alter the amplitude of ΨT .
The Jastrow factor J is implemented differently in different QMC
packages.

When large and complex systems are simulated, such as
adsorption on surfaces or molecular crystals, the most common
practice is to obtain D from a deterministic approach, usually DFT,
and to decide a functional form for J and optimize, within the
variational Monte Carlo (VMC) scheme,1 the parameters minimiz-
ing either the energy or the variance. Since D comes from a deter-
ministic method, there is no reproducibility problem here, and in
taking energy differences we can usually expect a large cancella-
tion of the FN error. On the other hand, J is optimized stochas-
tically, so its parameters are affected by an optimization uncer-
tainty. Dealing with this uncertainty becomes increasingly challeng-
ing as the system gets larger. Moreover, a new optimization of J

is needed for every distinct orientation of the molecular systems,
and optimizing J so frequently is tedious and time-consuming,
and, due to the stochastic nature of the optimization procedure,
can lead to Jastrow factors of different qualities, resulting in less
than optimal cancellation of errors. A human supervision of the
optimization is always highly recommended, if not necessary. The
optimization is responsible for making QMC labor intense and
nonautomatic.

B. Diffusion Monte Carlo
The DMC algorithm with importance sampling performs

a time evolution of f (R, t) = ΨT(R)ψ(R, t), where ΨT(R)
is a trial wave function (described in Sec. II A), R are the

3N-dimensional electronic coordinates, and ψ(R, t) is the solution
at time t of the imaginary time Schödinger equation,

− @

@t
ψ(R, t) = �Ĥ − ET�ψ(R, t), (1)

where Ĥ is the Hamiltonian and ET is a trial energy, with initial con-
dition ψ(R, 0) = ΨT(R) and converging exponentially to the exact
ground state Φ(R) for t → ∞. Thus, limt→∞f (R, t) = ΨT(R)Φ(R).
Since Φ is an eigenstate for Ĥ, the ground state energy E0 can be
calculated using the mixed estimator,

E0 = �Φ�Ĥ�ΨT��Φ�ΨT� = ∫
Φ(R)ΨT(R)EL(R)dR
∫ Φ(R)ΨT(R)dR , (2)

where EL(R) = �R�Ĥ�ΨT��R�ΨT� is the local energy in the electronic configu-
ration R for the trial wave function ΨT .

The time evolution of f (R, t) follows from the imaginary time
Schödinger equation (1), which in the integral form leads to

f �R′, t + τ� = � G�R′ ← R, τ�f (R, t)dR, (3)

where τ is the time step and G(R′ ← R, τ) is the Green function for
the importance sampling, which is defined (symbolically) as

G(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′� exp(−τĤ)�R�. (4)

Thus, by starting from f (R, 0) = ΨT(R)2 and performing an evolu-
tion according to the Green function G(R′ ← R, t), we are able to
assess expectation values of the exact ground state Φ,

Φ(R′)ΨT(R′) = lim
t→∞� G(R′ ← R, t)ΨT(R)2dR. (5)

This is the process implemented in the DMC algorithm. In fermionic
systems, the fixed-node (FN) approximation is typically introduced,
so the FN Hamiltonian ĤFN ≡ Ĥ + V̂FN , where V̂FN is an infinite wall
at the nodal surface of ΨT , is used. Further details are reported in
Appendix A.

TheHamiltonian Ĥ is the sum of the kinetic and potential oper-
ators K̂ and V̂ , respectively. In all-electron calculations, the poten-
tial operator V̂ is local, V̂ = V̂L. However, in general, there is the
need to deploy pseudopotentials to represent the core electrons of
the atoms and reduce the computational cost of the calculation, see
Appendix B. In this case, the potential term has both local and non-
local operators: V̂ = V̂L + V̂NL. The presence of nonlocal operators in
the potential complicates the formulation of the DMC algorithm and
forces the introduction of a further approximation. In the following,
we will first consider the simple case of a potential with only local
operators, Sec. II C, and later we will consider the case of potential
term with nonlocal operators, Sec. II D.

C. Green’s function for Ĥ = K̂ + V̂L

The simplest case is when the Hamiltonian has only a local
potential term; thus, it can be written as Ĥ = K̂ + V̂L, with
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K̂ = − 1
2∇2. By substitution in the imaginary time Schrödinger

equation [Eq. (1)], multiplication by ΨT(R), and some algebraic
operations, we obtain

@

@t
f (R, t) = 1

2
∇2f (R, t) −∇ ⋅ (V(R)f (R, t))
− [EL(R) − ET] f (R, t), (6)

where V(R) = ∇ log�ΨT(R)�. Thus, the time evolution of f (R, t)
is given on the right-hand side (RHS) of Eq. (6). If the RHS only
had the first two terms, we would have a pure drift-diffusion pro-
cess, having a Green’s function that for a small time step τ and
for N electrons in the system can be approximated as GDD(R′
← R, τ) = 1(2πτ)3 N�2 exp�− [R′−R−τV(R)]22τ �. The last term on the RHS
of Eq. (6) is the branching term, and its associated Green’s function
is GB(R′ ← R, τ) = exp�−τ EL(R′)+EL(R)−2ET

2 �. Green’s function of
f (R, t) for a small time interval τ can be approximated48,49 as

GBDD(R′ ← R, τ) ≈ GB(R′ ← R, τ)GDD(R′ ← R, τ), (7)

which is exact for τ → 0. GBDD(R′ ← R, τ) can be used to approx-
imate Green’s function for an arbitrarily large time interval t.50
GBDD defines a branching-drift-diffusion process, as described, for
instance, in Ref. 1. The algorithms implemented in QMC packages
are usually a little more involved.51,110,111 However, there is no need
here to complicate further the picture.Wewill be concerned with the
results of DMC in the continuous limit τ → 0. In this limit, the only
bias in the DMC energy evaluation EFN is given by the FN approxi-
mation. In particular, EFN ≥ E0, with the equality reached if the nodes
of ΨT are exact.

D. Green’s function for Ĥ = K̂ + V̂L + V̂NL

When pseudopotentials are used, the potential term has non-
local operators V̂NL, and the Hamiltonian can be written as
Ĥ = K̂ + V̂L + V̂NL. If we consider the imaginary time Schrödinger
equation (1) and substitute Ĥ, we obtain the following time evolu-
tion of f (R, t):

@

@t
f (R, t) = 1

2
∇2f (R, t) −∇ ⋅ (V(R)f (R, t))
−�����
�K̂ + V̂L�ΨT(R)

ΨT(R) +
V̂NLψ(R, t)
ψ(R, t) − ET����� f (R, t). (8)

The drift and diffusion terms on the RHS are identical to Eq. (6), but
there is a complication in the branching term. Indeed, we cannot
calculate V̂NLψ(R,t)

ψ(R,t) , as we do not know the analytical form of ψ(R, t).
There is an alternative approach, which is to write the Green’s

function G(R′ ← R, τ) for Ĥ. Using the Zassenhaus formula, for
small τ, we can approximate e−τ(K̂+V̂L+V̂NL) with e−τV̂NL e−τ(K̂+V̂L), and
by substituting it into Eq. (4), we obtain

G(R′ ← R, τ) ∼ � TNL(R′ ← R̃, τ)∗GL(R̃← R, τ)dR̃, (9)

where GL(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′�e−τ(K̂+V̂L)�R� is Green’s function

for the local part of the Hamiltonian, which has been discussed in
Sec. II C, and TNL(R′ ← R, τ) ≡ ΨT(R′)

ΨT(R) �R′�e−τV̂NL �R� is Green’s

function of the nonlocal part of the potential. For small τ, we have
that TNL(R′ ← R, τ) ∼ δR′ ,R − τVR′ ,R, where δR′ ,R is the Dirac’s delta
and

VR′ ,R ≡ ΨT(R′)
ΨT(R) �R′�V̂NL�R�. (10)

Notice that VR′ ,R can be either positive or negative depending on
ΨT , V̂NL, R, and R′. Whenever VR′ ,R > 0 for some R′ ≠ R, then
TNL(R′ ← R, τ) < 0. The DMC algorithm needs to interpret the
Green’s function as a transition probability, but if TNL(R′ ← R, τ)< 0 for some R and R′, it cannot be a transition probability from R
to R′ (sign problem). Thus, the presence of V̂NL yields a sign prob-
lem in the DMC algorithm29,31 because it gives a Green’s function
G(R′ ← R, τ) which can have negative terms.

There is no direct solution to this problem, and as a con-
sequence, an approximation is introduced. As noted earlier, two
approaches are available: either to use the locality approximation
(LA)30 or Casula’s T-move approximation (TM).29,31 They are sum-
marized in Secs. II D 1 and II D 2.

1. Locality approximation in FN-DMC
The approach taken in LA is to approximate the unknown

quantity V̂NLΦ(R,t)
Φ(R,t) with V̂NLΨT(R)

ΨT(R) , which is the value of the nonlo-
cal potential localized on the trial wave function ΨT(R). By using
this approximation in Eq. (8), we obtain that the 3rd term on the
RHS is −[EL(R) − ET]f (R, t), and the equation becomes identical
to Eq. (6). Thus, Green’s function in LA is given by Eq. (7) and the
DMC algorithm is a branching-drift-diffusion process.

The major difference from Sec. II C is that we approximate
the Hamiltonian, which is no longer given by the FN Hamiltonian
ĤFN ≡ Ĥ + V̂FN , but by

ĤLA
FN ≡ K̂ + V̂L +

V̂NLΨT

ΨT
+ V̂FN , (11)

where the notation V̂NLΨT
ΨT

is used to indicate that the non-
local potential V̂NL has been localized using the function
ΨT(R). So, given a generic function ξ(R), we have V̂NLΨT

ΨT
ξ(R)

= ∫ dR′ΨT(R′)�R′�V̂NL�R� ξ(R)
ΨT(R) . Notice that ĤLA

FN has no nonlocal
potential term, i.e., the action of ĤLA

FN on the generic function ξ at
point R only depends on the value of ξ at R.

The ground state for ĤLA
FN is the projected wave function ΦLA

FN .
The expectation value of the energy ELA

FN can be evaluated using the
mixed estimator because V̂NLΨT

ΨT
ΨT(R) = V̂NLΨT(R), so ĤLA

FN �ΨT�= Ĥ�ΨT�. However, in general ΦLA
FN is different from the (unknown)

ground state ΦFN for ĤFN ; thus, ELA
FN ≠ EFN . In other words, with

LA we have lost the variationality of the approach because the error
introduced by this approximation can either be positive or nega-
tive, and ELA

FN is not, in general, an upper bound for E0. Only in
the (ideal) case of ΨT = ΦFN , we do have ĤLA

FN �ΦFN� = EFN �ΦFN�,
so ELA

FN = EFN . As a corollary, with the exact trial wave function,
ΨT = Φ, then we have that ELA

FN = E0. However, the trial wave
function having exact nodes is not a sufficient condition for having
ELA
FN = E0 as the LA depends on the overall trial wave functionΨT and

not just on its nodes.52 In other words, ELA
FN has both a FN error and a
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K̂ = − 1
2∇2. By substitution in the imaginary time Schrödinger

equation [Eq. (1)], multiplication by ΨT(R), and some algebraic
operations, we obtain

@

@t
f (R, t) = 1

2
∇2f (R, t) −∇ ⋅ (V(R)f (R, t))
− [EL(R) − ET] f (R, t), (6)

where V(R) = ∇ log�ΨT(R)�. Thus, the time evolution of f (R, t)
is given on the right-hand side (RHS) of Eq. (6). If the RHS only
had the first two terms, we would have a pure drift-diffusion pro-
cess, having a Green’s function that for a small time step τ and
for N electrons in the system can be approximated as GDD(R′
← R, τ) = 1(2πτ)3 N�2 exp�− [R′−R−τV(R)]22τ �. The last term on the RHS
of Eq. (6) is the branching term, and its associated Green’s function
is GB(R′ ← R, τ) = exp�−τ EL(R′)+EL(R)−2ET

2 �. Green’s function of
f (R, t) for a small time interval τ can be approximated48,49 as

GBDD(R′ ← R, τ) ≈ GB(R′ ← R, τ)GDD(R′ ← R, τ), (7)

which is exact for τ → 0. GBDD(R′ ← R, τ) can be used to approx-
imate Green’s function for an arbitrarily large time interval t.50
GBDD defines a branching-drift-diffusion process, as described, for
instance, in Ref. 1. The algorithms implemented in QMC packages
are usually a little more involved.51,110,111 However, there is no need
here to complicate further the picture.Wewill be concerned with the
results of DMC in the continuous limit τ → 0. In this limit, the only
bias in the DMC energy evaluation EFN is given by the FN approxi-
mation. In particular, EFN ≥ E0, with the equality reached if the nodes
of ΨT are exact.

D. Green’s function for Ĥ = K̂ + V̂L + V̂NL

When pseudopotentials are used, the potential term has non-
local operators V̂NL, and the Hamiltonian can be written as
Ĥ = K̂ + V̂L + V̂NL. If we consider the imaginary time Schrödinger
equation (1) and substitute Ĥ, we obtain the following time evolu-
tion of f (R, t):

@

@t
f (R, t) = 1

2
∇2f (R, t) −∇ ⋅ (V(R)f (R, t))
−�����
�K̂ + V̂L�ΨT(R)

ΨT(R) +
V̂NLψ(R, t)
ψ(R, t) − ET����� f (R, t). (8)

The drift and diffusion terms on the RHS are identical to Eq. (6), but
there is a complication in the branching term. Indeed, we cannot
calculate V̂NLψ(R,t)

ψ(R,t) , as we do not know the analytical form of ψ(R, t).
There is an alternative approach, which is to write the Green’s

function G(R′ ← R, τ) for Ĥ. Using the Zassenhaus formula, for
small τ, we can approximate e−τ(K̂+V̂L+V̂NL) with e−τV̂NL e−τ(K̂+V̂L), and
by substituting it into Eq. (4), we obtain

G(R′ ← R, τ) ∼ � TNL(R′ ← R̃, τ)∗GL(R̃← R, τ)dR̃, (9)

where GL(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′�e−τ(K̂+V̂L)�R� is Green’s function

for the local part of the Hamiltonian, which has been discussed in
Sec. II C, and TNL(R′ ← R, τ) ≡ ΨT(R′)

ΨT(R) �R′�e−τV̂NL �R� is Green’s

function of the nonlocal part of the potential. For small τ, we have
that TNL(R′ ← R, τ) ∼ δR′ ,R − τVR′ ,R, where δR′ ,R is the Dirac’s delta
and

VR′ ,R ≡ ΨT(R′)
ΨT(R) �R′�V̂NL�R�. (10)

Notice that VR′ ,R can be either positive or negative depending on
ΨT , V̂NL, R, and R′. Whenever VR′ ,R > 0 for some R′ ≠ R, then
TNL(R′ ← R, τ) < 0. The DMC algorithm needs to interpret the
Green’s function as a transition probability, but if TNL(R′ ← R, τ)< 0 for some R and R′, it cannot be a transition probability from R
to R′ (sign problem). Thus, the presence of V̂NL yields a sign prob-
lem in the DMC algorithm29,31 because it gives a Green’s function
G(R′ ← R, τ) which can have negative terms.

There is no direct solution to this problem, and as a con-
sequence, an approximation is introduced. As noted earlier, two
approaches are available: either to use the locality approximation
(LA)30 or Casula’s T-move approximation (TM).29,31 They are sum-
marized in Secs. II D 1 and II D 2.

1. Locality approximation in FN-DMC
The approach taken in LA is to approximate the unknown

quantity V̂NLΦ(R,t)
Φ(R,t) with V̂NLΨT(R)

ΨT(R) , which is the value of the nonlo-
cal potential localized on the trial wave function ΨT(R). By using
this approximation in Eq. (8), we obtain that the 3rd term on the
RHS is −[EL(R) − ET]f (R, t), and the equation becomes identical
to Eq. (6). Thus, Green’s function in LA is given by Eq. (7) and the
DMC algorithm is a branching-drift-diffusion process.

The major difference from Sec. II C is that we approximate
the Hamiltonian, which is no longer given by the FN Hamiltonian
ĤFN ≡ Ĥ + V̂FN , but by

ĤLA
FN ≡ K̂ + V̂L +

V̂NLΨT

ΨT
+ V̂FN , (11)

where the notation V̂NLΨT
ΨT

is used to indicate that the non-
local potential V̂NL has been localized using the function
ΨT(R). So, given a generic function ξ(R), we have V̂NLΨT

ΨT
ξ(R)

= ∫ dR′ΨT(R′)�R′�V̂NL�R� ξ(R)
ΨT(R) . Notice that ĤLA

FN has no nonlocal
potential term, i.e., the action of ĤLA

FN on the generic function ξ at
point R only depends on the value of ξ at R.

The ground state for ĤLA
FN is the projected wave function ΦLA

FN .
The expectation value of the energy ELA

FN can be evaluated using the
mixed estimator because V̂NLΨT

ΨT
ΨT(R) = V̂NLΨT(R), so ĤLA

FN �ΨT�= Ĥ�ΨT�. However, in general ΦLA
FN is different from the (unknown)

ground state ΦFN for ĤFN ; thus, ELA
FN ≠ EFN . In other words, with

LA we have lost the variationality of the approach because the error
introduced by this approximation can either be positive or nega-
tive, and ELA

FN is not, in general, an upper bound for E0. Only in
the (ideal) case of ΨT = ΦFN , we do have ĤLA

FN �ΦFN� = EFN �ΦFN�,
so ELA

FN = EFN . As a corollary, with the exact trial wave function,
ΨT = Φ, then we have that ELA

FN = E0. However, the trial wave
function having exact nodes is not a sufficient condition for having
ELA
FN = E0 as the LA depends on the overall trial wave functionΨT and

not just on its nodes.52 In other words, ELA
FN has both a FN error and a
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imate Green’s function for an arbitrarily large time interval t.50
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instance, in Ref. 1. The algorithms implemented in QMC packages
are usually a little more involved.51,110,111 However, there is no need
here to complicate further the picture.Wewill be concerned with the
results of DMC in the continuous limit τ → 0. In this limit, the only
bias in the DMC energy evaluation EFN is given by the FN approxi-
mation. In particular, EFN ≥ E0, with the equality reached if the nodes
of ΨT are exact.

D. Green’s function for Ĥ = K̂ + V̂L + V̂NL

When pseudopotentials are used, the potential term has non-
local operators V̂NL, and the Hamiltonian can be written as
Ĥ = K̂ + V̂L + V̂NL. If we consider the imaginary time Schrödinger
equation (1) and substitute Ĥ, we obtain the following time evolu-
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The drift and diffusion terms on the RHS are identical to Eq. (6), but
there is a complication in the branching term. Indeed, we cannot
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ψ(R,t) , as we do not know the analytical form of ψ(R, t).
There is an alternative approach, which is to write the Green’s

function G(R′ ← R, τ) for Ĥ. Using the Zassenhaus formula, for
small τ, we can approximate e−τ(K̂+V̂L+V̂NL) with e−τV̂NL e−τ(K̂+V̂L), and
by substituting it into Eq. (4), we obtain
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where GL(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′�e−τ(K̂+V̂L)�R� is Green’s function

for the local part of the Hamiltonian, which has been discussed in
Sec. II C, and TNL(R′ ← R, τ) ≡ ΨT(R′)

ΨT(R) �R′�e−τV̂NL �R� is Green’s

function of the nonlocal part of the potential. For small τ, we have
that TNL(R′ ← R, τ) ∼ δR′ ,R − τVR′ ,R, where δR′ ,R is the Dirac’s delta
and

VR′ ,R ≡ ΨT(R′)
ΨT(R) �R′�V̂NL�R�. (10)

Notice that VR′ ,R can be either positive or negative depending on
ΨT , V̂NL, R, and R′. Whenever VR′ ,R > 0 for some R′ ≠ R, then
TNL(R′ ← R, τ) < 0. The DMC algorithm needs to interpret the
Green’s function as a transition probability, but if TNL(R′ ← R, τ)< 0 for some R and R′, it cannot be a transition probability from R
to R′ (sign problem). Thus, the presence of V̂NL yields a sign prob-
lem in the DMC algorithm29,31 because it gives a Green’s function
G(R′ ← R, τ) which can have negative terms.

There is no direct solution to this problem, and as a con-
sequence, an approximation is introduced. As noted earlier, two
approaches are available: either to use the locality approximation
(LA)30 or Casula’s T-move approximation (TM).29,31 They are sum-
marized in Secs. II D 1 and II D 2.

1. Locality approximation in FN-DMC
The approach taken in LA is to approximate the unknown

quantity V̂NLΦ(R,t)
Φ(R,t) with V̂NLΨT(R)

ΨT(R) , which is the value of the nonlo-
cal potential localized on the trial wave function ΨT(R). By using
this approximation in Eq. (8), we obtain that the 3rd term on the
RHS is −[EL(R) − ET]f (R, t), and the equation becomes identical
to Eq. (6). Thus, Green’s function in LA is given by Eq. (7) and the
DMC algorithm is a branching-drift-diffusion process.

The major difference from Sec. II C is that we approximate
the Hamiltonian, which is no longer given by the FN Hamiltonian
ĤFN ≡ Ĥ + V̂FN , but by

ĤLA
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V̂NLΨT

ΨT
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where the notation V̂NLΨT
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is used to indicate that the non-
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ΨT(R) . Notice that ĤLA

FN has no nonlocal
potential term, i.e., the action of ĤLA

FN on the generic function ξ at
point R only depends on the value of ξ at R.

The ground state for ĤLA
FN is the projected wave function ΦLA

FN .
The expectation value of the energy ELA

FN can be evaluated using the
mixed estimator because V̂NLΨT
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ΨT(R) = V̂NLΨT(R), so ĤLA

FN �ΨT�= Ĥ�ΨT�. However, in general ΦLA
FN is different from the (unknown)

ground state ΦFN for ĤFN ; thus, ELA
FN ≠ EFN . In other words, with

LA we have lost the variationality of the approach because the error
introduced by this approximation can either be positive or nega-
tive, and ELA

FN is not, in general, an upper bound for E0. Only in
the (ideal) case of ΨT = ΦFN , we do have ĤLA

FN �ΦFN� = EFN �ΦFN�,
so ELA

FN = EFN . As a corollary, with the exact trial wave function,
ΨT = Φ, then we have that ELA

FN = E0. However, the trial wave
function having exact nodes is not a sufficient condition for having
ELA
FN = E0 as the LA depends on the overall trial wave functionΨT and

not just on its nodes.52 In other words, ELA
FN has both a FN error and a
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ionization energies (Sec. IV B), stability (Sec. IV C), and efficiency
(Sec. IV D). A reader already familiar with DMC can skip to Sec. III.
We draw our final conclusions in Sec. V.

II. OVERVIEW ON FIXED NODE DIFFUSION
MONTE CARLO

A. The trial wave function
The trial wave function has a critical role in determining the

accuracy of FN-DMC. A QMC trial wave function is the product
ΨT(R) = D(R) ∗ expJ(R) of an antisymmetric function D(R)
and a symmetric (bosonic) function expJ(R), called the Jastrow
factor, where R is the electronic configuration. The function D(R)
is typically a single Slater determinant, especially when large systems
are simulated. However, it is worth mentioning that if the system
under consideration is not too large (say, generally not more than a
few atoms) better functions can be used, such as multideterminant
expansions of Slater determinants,34–39 valence-bond wave func-
tions,40 the antisymmetrized geminal product,41,42 the Pfaffian,43
and others (see, for instance, the review by Austin et al.44). More-
over, the backflow transformation45–47 can be employed to further
improve any of the aforementioned ansätze, at the price of a signif-
icantly larger computational cost. The Jastrow factor describes the
dynamical correlation between the electrons, by including explicit
functions of the electron-electron distances. In DMC, a property of
interest is the nodal surface of ΨT , which is the hypersurface cor-
responding to ΨT(R) = 0, for real wave functions, or the complex
phase of ΨT for complex wave functions. They are both determined
by D(R) as the Jastrow factor can only alter the amplitude of ΨT .
The Jastrow factor J is implemented differently in different QMC
packages.

When large and complex systems are simulated, such as
adsorption on surfaces or molecular crystals, the most common
practice is to obtain D from a deterministic approach, usually DFT,
and to decide a functional form for J and optimize, within the
variational Monte Carlo (VMC) scheme,1 the parameters minimiz-
ing either the energy or the variance. Since D comes from a deter-
ministic method, there is no reproducibility problem here, and in
taking energy differences we can usually expect a large cancella-
tion of the FN error. On the other hand, J is optimized stochas-
tically, so its parameters are affected by an optimization uncer-
tainty. Dealing with this uncertainty becomes increasingly challeng-
ing as the system gets larger. Moreover, a new optimization of J

is needed for every distinct orientation of the molecular systems,
and optimizing J so frequently is tedious and time-consuming,
and, due to the stochastic nature of the optimization procedure,
can lead to Jastrow factors of different qualities, resulting in less
than optimal cancellation of errors. A human supervision of the
optimization is always highly recommended, if not necessary. The
optimization is responsible for making QMC labor intense and
nonautomatic.

B. Diffusion Monte Carlo
The DMC algorithm with importance sampling performs

a time evolution of f (R, t) = ΨT(R)ψ(R, t), where ΨT(R)
is a trial wave function (described in Sec. II A), R are the

3N-dimensional electronic coordinates, and ψ(R, t) is the solution
at time t of the imaginary time Schödinger equation,

− @

@t
ψ(R, t) = �Ĥ − ET�ψ(R, t), (1)

where Ĥ is the Hamiltonian and ET is a trial energy, with initial con-
dition ψ(R, 0) = ΨT(R) and converging exponentially to the exact
ground state Φ(R) for t → ∞. Thus, limt→∞f (R, t) = ΨT(R)Φ(R).
Since Φ is an eigenstate for Ĥ, the ground state energy E0 can be
calculated using the mixed estimator,

E0 = �Φ�Ĥ�ΨT��Φ�ΨT� = ∫
Φ(R)ΨT(R)EL(R)dR
∫ Φ(R)ΨT(R)dR , (2)

where EL(R) = �R�Ĥ�ΨT��R�ΨT� is the local energy in the electronic configu-
ration R for the trial wave function ΨT .

The time evolution of f (R, t) follows from the imaginary time
Schödinger equation (1), which in the integral form leads to

f �R′, t + τ� = � G�R′ ← R, τ�f (R, t)dR, (3)

where τ is the time step and G(R′ ← R, τ) is the Green function for
the importance sampling, which is defined (symbolically) as

G(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′� exp(−τĤ)�R�. (4)

Thus, by starting from f (R, 0) = ΨT(R)2 and performing an evolu-
tion according to the Green function G(R′ ← R, t), we are able to
assess expectation values of the exact ground state Φ,

Φ(R′)ΨT(R′) = lim
t→∞� G(R′ ← R, t)ΨT(R)2dR. (5)

This is the process implemented in the DMC algorithm. In fermionic
systems, the fixed-node (FN) approximation is typically introduced,
so the FN Hamiltonian ĤFN ≡ Ĥ + V̂FN , where V̂FN is an infinite wall
at the nodal surface of ΨT , is used. Further details are reported in
Appendix A.

TheHamiltonian Ĥ is the sum of the kinetic and potential oper-
ators K̂ and V̂ , respectively. In all-electron calculations, the poten-
tial operator V̂ is local, V̂ = V̂L. However, in general, there is the
need to deploy pseudopotentials to represent the core electrons of
the atoms and reduce the computational cost of the calculation, see
Appendix B. In this case, the potential term has both local and non-
local operators: V̂ = V̂L + V̂NL. The presence of nonlocal operators in
the potential complicates the formulation of the DMC algorithm and
forces the introduction of a further approximation. In the following,
we will first consider the simple case of a potential with only local
operators, Sec. II C, and later we will consider the case of potential
term with nonlocal operators, Sec. II D.

C. Green’s function for Ĥ = K̂ + V̂L

The simplest case is when the Hamiltonian has only a local
potential term; thus, it can be written as Ĥ = K̂ + V̂L, with
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ΨT(R) = D(R) ∗ expJ(R) of an antisymmetric function D(R)
and a symmetric (bosonic) function expJ(R), called the Jastrow
factor, where R is the electronic configuration. The function D(R)
is typically a single Slater determinant, especially when large systems
are simulated. However, it is worth mentioning that if the system
under consideration is not too large (say, generally not more than a
few atoms) better functions can be used, such as multideterminant
expansions of Slater determinants,34–39 valence-bond wave func-
tions,40 the antisymmetrized geminal product,41,42 the Pfaffian,43
and others (see, for instance, the review by Austin et al.44). More-
over, the backflow transformation45–47 can be employed to further
improve any of the aforementioned ansätze, at the price of a signif-
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phase of ΨT for complex wave functions. They are both determined
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When large and complex systems are simulated, such as
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and to decide a functional form for J and optimize, within the
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and, due to the stochastic nature of the optimization procedure,
can lead to Jastrow factors of different qualities, resulting in less
than optimal cancellation of errors. A human supervision of the
optimization is always highly recommended, if not necessary. The
optimization is responsible for making QMC labor intense and
nonautomatic.
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The DMC algorithm with importance sampling performs

a time evolution of f (R, t) = ΨT(R)ψ(R, t), where ΨT(R)
is a trial wave function (described in Sec. II A), R are the

3N-dimensional electronic coordinates, and ψ(R, t) is the solution
at time t of the imaginary time Schödinger equation,
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where Ĥ is the Hamiltonian and ET is a trial energy, with initial con-
dition ψ(R, 0) = ΨT(R) and converging exponentially to the exact
ground state Φ(R) for t → ∞. Thus, limt→∞f (R, t) = ΨT(R)Φ(R).
Since Φ is an eigenstate for Ĥ, the ground state energy E0 can be
calculated using the mixed estimator,
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where EL(R) = �R�Ĥ�ΨT��R�ΨT� is the local energy in the electronic configu-
ration R for the trial wave function ΨT .

The time evolution of f (R, t) follows from the imaginary time
Schödinger equation (1), which in the integral form leads to

f �R′, t + τ� = � G�R′ ← R, τ�f (R, t)dR, (3)

where τ is the time step and G(R′ ← R, τ) is the Green function for
the importance sampling, which is defined (symbolically) as

G(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′� exp(−τĤ)�R�. (4)

Thus, by starting from f (R, 0) = ΨT(R)2 and performing an evolu-
tion according to the Green function G(R′ ← R, t), we are able to
assess expectation values of the exact ground state Φ,

Φ(R′)ΨT(R′) = lim
t→∞� G(R′ ← R, t)ΨT(R)2dR. (5)

This is the process implemented in the DMC algorithm. In fermionic
systems, the fixed-node (FN) approximation is typically introduced,
so the FN Hamiltonian ĤFN ≡ Ĥ + V̂FN , where V̂FN is an infinite wall
at the nodal surface of ΨT , is used. Further details are reported in
Appendix A.

TheHamiltonian Ĥ is the sum of the kinetic and potential oper-
ators K̂ and V̂ , respectively. In all-electron calculations, the poten-
tial operator V̂ is local, V̂ = V̂L. However, in general, there is the
need to deploy pseudopotentials to represent the core electrons of
the atoms and reduce the computational cost of the calculation, see
Appendix B. In this case, the potential term has both local and non-
local operators: V̂ = V̂L + V̂NL. The presence of nonlocal operators in
the potential complicates the formulation of the DMC algorithm and
forces the introduction of a further approximation. In the following,
we will first consider the simple case of a potential with only local
operators, Sec. II C, and later we will consider the case of potential
term with nonlocal operators, Sec. II D.

C. Green’s function for Ĥ = K̂ + V̂L

The simplest case is when the Hamiltonian has only a local
potential term; thus, it can be written as Ĥ = K̂ + V̂L, with
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functions are gaussian type orbitals) or numerically, becoming a
local potential which, for instance, can be precomputed on a grid
at the beginning of a QMC simulation. This approach prevents
the evaluation of many wave function ratios and possibly yields an
appreciable speedup.

IV. RESULTS
In Secs. II and III, we have outlined that both LA and TM

yield total energies, ELA
FN and ETM

FN , affected by the quality of the trial
wave function ΨT = D ∗ expJ. Within the DLA scheme intro-
duced here, the total energy EDLA

FN is affected only by the determinant
part D of the trial wave function ΨT . Therefore, DLA eliminates
the uncertainty due to the Jastrow factor on the DMC results per-
formed with pseudopotentials. We are going to show here, in a few
examples, the amount of uncertainty that the Jastrow can introduce
in LA and TM, in contrast to DLA which is not affected by this
uncertainty.

A. DLA is good for interaction energy evaluations
The first system that we considered is water bound to ben-

zene, as shown in the inset of Fig. 1. This is a simple example of
the calculation of an interaction energy Eint ≡ Ebound − Efar, which
is the difference between the energy (Ebound) of the system in the
bound configuration and the energy (Efar) of the molecules far away.
Many of these calculations are performed to evaluate a binding
energy curve, which are needed for example in adsorption energy
calculations of molecules on surfaces.3–6,19,20 Whereas in this small
system, it is not overly burdensome to optimize J at every dif-
ferent geometry, in a larger and more complex adsorption system,
this would be tedious and time-consuming, notwithstanding the
variability of the quality of the optimization, due to its stochastic
nature.

This specific water-benzene configuration has a reference Eint
of −128 ± 1 meV,3 as obtained from basis set converged CCSD(T)

calculations.63 A standard setup for FN-DMC was used, with TN-
DF pseudopotentials,57 a Slater-Jastrow ΨT with determinant D

obtained from a DFT calculation.64 A Jastrow factor J having
explicit electron-electron (e-e), electron-nucleus (e-n), and electron-
electron-nucleus (e-e-n) terms was used here. Within this specific
functional form of J, we obtained two different Jastrow factors,
which we call J.bound and J.far. The former, J.bound, is the Jas-
trow obtained when we optimize the parameters by minimizing
the variational variance Var[EL]VMC of the local energy for the
bound configuration. The latter, J.far, is instead obtained by opti-
mizing the parameters on a configuration where the water and the
benzene are far away (around 10 Å) and are effectively noninter-
acting. In Fig. 1, we compare the reference value with the FN-
DMC evaluations obtained with LA, TM, and DLA, and the dif-
ferent Jastrow factors, whereas Fig. 2 reports the FN-DMC total
energies.

The left panel of Fig. 1 shows results for J.far used for both the
bound and the far-away configuration. With this setup, DLA is the
only method that provides a reliable interaction energy, which we
can estimate to be −131 ± 2 meV for the τ→ 0 limit from a quadratic
fit of the values obtained at finite values of τ.65 The estimated τ → 0
limit for LA and TM is −187 ± 3 meV and −76 ± 1 meV.66 So,
with this nonoptimal Jastrow factor, LA severely overbinds and TM
underbinds.67

A different choice, which is indeed the standard procedure
adopted in DMC, is to optimize the Jastrow factor specifically for
each configuration, i.e., we use J.bound for the bound configuration
and J.far for the far configuration. We named this scheme J.mix, and
the results obtained with LA, TM, and DLA are shown in the right
panel of Fig. 1. In this case, all three methods are in decent agree-
ment with the CCSD(T) reference, from a quadratic fit, we obtain
the τ → 0 limit: −135 ± 3 meV for LA, −127 ± 1 meV for TM, and−129 ± 2 meV for DLA.68 The figure also shows the time step error
associated with the three different methods. The first consideration
is that the better choice of the Jastrow has greatly improved the accu-
racy for any finite τ evaluation with respect to the case with J.far. The

FIG. 1. Interaction energy Eint for a water-benzene complex in the so-called “2-leg” configuration, for the geometry shown in the inset. The plots show FN-DMC evaluations
vs the time step τ, using LA, TM, and DLA. (Left plot) Results obtained using the Jastrow factor J.far in both the bound and the far configurations. J.far has been optimized
for the far configuration, i.e., for noninteracting water-benzene molecules. (Middle plot) Results obtained using a trial wave function without any Jastrow factor. In this case,
LA and DLA are equivalent. (Right plot) Results obtained with mixed Jastrow factor: for the noninteracting configuration, we used J.far, and for the bound configuration, we
used J.bound. The reference CCSD(T) value is −128 ± 1 meV.3
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functions are gaussian type orbitals) or numerically, becoming a
local potential which, for instance, can be precomputed on a grid
at the beginning of a QMC simulation. This approach prevents
the evaluation of many wave function ratios and possibly yields an
appreciable speedup.

IV. RESULTS
In Secs. II and III, we have outlined that both LA and TM

yield total energies, ELA
FN and ETM

FN , affected by the quality of the trial
wave function ΨT = D ∗ expJ. Within the DLA scheme intro-
duced here, the total energy EDLA

FN is affected only by the determinant
part D of the trial wave function ΨT . Therefore, DLA eliminates
the uncertainty due to the Jastrow factor on the DMC results per-
formed with pseudopotentials. We are going to show here, in a few
examples, the amount of uncertainty that the Jastrow can introduce
in LA and TM, in contrast to DLA which is not affected by this
uncertainty.

A. DLA is good for interaction energy evaluations
The first system that we considered is water bound to ben-

zene, as shown in the inset of Fig. 1. This is a simple example of
the calculation of an interaction energy Eint ≡ Ebound − Efar, which
is the difference between the energy (Ebound) of the system in the
bound configuration and the energy (Efar) of the molecules far away.
Many of these calculations are performed to evaluate a binding
energy curve, which are needed for example in adsorption energy
calculations of molecules on surfaces.3–6,19,20 Whereas in this small
system, it is not overly burdensome to optimize J at every dif-
ferent geometry, in a larger and more complex adsorption system,
this would be tedious and time-consuming, notwithstanding the
variability of the quality of the optimization, due to its stochastic
nature.

This specific water-benzene configuration has a reference Eint
of −128 ± 1 meV,3 as obtained from basis set converged CCSD(T)

calculations.63 A standard setup for FN-DMC was used, with TN-
DF pseudopotentials,57 a Slater-Jastrow ΨT with determinant D

obtained from a DFT calculation.64 A Jastrow factor J having
explicit electron-electron (e-e), electron-nucleus (e-n), and electron-
electron-nucleus (e-e-n) terms was used here. Within this specific
functional form of J, we obtained two different Jastrow factors,
which we call J.bound and J.far. The former, J.bound, is the Jas-
trow obtained when we optimize the parameters by minimizing
the variational variance Var[EL]VMC of the local energy for the
bound configuration. The latter, J.far, is instead obtained by opti-
mizing the parameters on a configuration where the water and the
benzene are far away (around 10 Å) and are effectively noninter-
acting. In Fig. 1, we compare the reference value with the FN-
DMC evaluations obtained with LA, TM, and DLA, and the dif-
ferent Jastrow factors, whereas Fig. 2 reports the FN-DMC total
energies.

The left panel of Fig. 1 shows results for J.far used for both the
bound and the far-away configuration. With this setup, DLA is the
only method that provides a reliable interaction energy, which we
can estimate to be −131 ± 2 meV for the τ→ 0 limit from a quadratic
fit of the values obtained at finite values of τ.65 The estimated τ → 0
limit for LA and TM is −187 ± 3 meV and −76 ± 1 meV.66 So,
with this nonoptimal Jastrow factor, LA severely overbinds and TM
underbinds.67

A different choice, which is indeed the standard procedure
adopted in DMC, is to optimize the Jastrow factor specifically for
each configuration, i.e., we use J.bound for the bound configuration
and J.far for the far configuration. We named this scheme J.mix, and
the results obtained with LA, TM, and DLA are shown in the right
panel of Fig. 1. In this case, all three methods are in decent agree-
ment with the CCSD(T) reference, from a quadratic fit, we obtain
the τ → 0 limit: −135 ± 3 meV for LA, −127 ± 1 meV for TM, and−129 ± 2 meV for DLA.68 The figure also shows the time step error
associated with the three different methods. The first consideration
is that the better choice of the Jastrow has greatly improved the accu-
racy for any finite τ evaluation with respect to the case with J.far. The

FIG. 1. Interaction energy Eint for a water-benzene complex in the so-called “2-leg” configuration, for the geometry shown in the inset. The plots show FN-DMC evaluations
vs the time step τ, using LA, TM, and DLA. (Left plot) Results obtained using the Jastrow factor J.far in both the bound and the far configurations. J.far has been optimized
for the far configuration, i.e., for noninteracting water-benzene molecules. (Middle plot) Results obtained using a trial wave function without any Jastrow factor. In this case,
LA and DLA are equivalent. (Right plot) Results obtained with mixed Jastrow factor: for the noninteracting configuration, we used J.far, and for the bound configuration, we
used J.bound. The reference CCSD(T) value is −128 ± 1 meV.3
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functions are gaussian type orbitals) or numerically, becoming a
local potential which, for instance, can be precomputed on a grid
at the beginning of a QMC simulation. This approach prevents
the evaluation of many wave function ratios and possibly yields an
appreciable speedup.

IV. RESULTS
In Secs. II and III, we have outlined that both LA and TM

yield total energies, ELA
FN and ETM

FN , affected by the quality of the trial
wave function ΨT = D ∗ expJ. Within the DLA scheme intro-
duced here, the total energy EDLA

FN is affected only by the determinant
part D of the trial wave function ΨT . Therefore, DLA eliminates
the uncertainty due to the Jastrow factor on the DMC results per-
formed with pseudopotentials. We are going to show here, in a few
examples, the amount of uncertainty that the Jastrow can introduce
in LA and TM, in contrast to DLA which is not affected by this
uncertainty.

A. DLA is good for interaction energy evaluations
The first system that we considered is water bound to ben-

zene, as shown in the inset of Fig. 1. This is a simple example of
the calculation of an interaction energy Eint ≡ Ebound − Efar, which
is the difference between the energy (Ebound) of the system in the
bound configuration and the energy (Efar) of the molecules far away.
Many of these calculations are performed to evaluate a binding
energy curve, which are needed for example in adsorption energy
calculations of molecules on surfaces.3–6,19,20 Whereas in this small
system, it is not overly burdensome to optimize J at every dif-
ferent geometry, in a larger and more complex adsorption system,
this would be tedious and time-consuming, notwithstanding the
variability of the quality of the optimization, due to its stochastic
nature.

This specific water-benzene configuration has a reference Eint
of −128 ± 1 meV,3 as obtained from basis set converged CCSD(T)

calculations.63 A standard setup for FN-DMC was used, with TN-
DF pseudopotentials,57 a Slater-Jastrow ΨT with determinant D

obtained from a DFT calculation.64 A Jastrow factor J having
explicit electron-electron (e-e), electron-nucleus (e-n), and electron-
electron-nucleus (e-e-n) terms was used here. Within this specific
functional form of J, we obtained two different Jastrow factors,
which we call J.bound and J.far. The former, J.bound, is the Jas-
trow obtained when we optimize the parameters by minimizing
the variational variance Var[EL]VMC of the local energy for the
bound configuration. The latter, J.far, is instead obtained by opti-
mizing the parameters on a configuration where the water and the
benzene are far away (around 10 Å) and are effectively noninter-
acting. In Fig. 1, we compare the reference value with the FN-
DMC evaluations obtained with LA, TM, and DLA, and the dif-
ferent Jastrow factors, whereas Fig. 2 reports the FN-DMC total
energies.

The left panel of Fig. 1 shows results for J.far used for both the
bound and the far-away configuration. With this setup, DLA is the
only method that provides a reliable interaction energy, which we
can estimate to be −131 ± 2 meV for the τ→ 0 limit from a quadratic
fit of the values obtained at finite values of τ.65 The estimated τ → 0
limit for LA and TM is −187 ± 3 meV and −76 ± 1 meV.66 So,
with this nonoptimal Jastrow factor, LA severely overbinds and TM
underbinds.67

A different choice, which is indeed the standard procedure
adopted in DMC, is to optimize the Jastrow factor specifically for
each configuration, i.e., we use J.bound for the bound configuration
and J.far for the far configuration. We named this scheme J.mix, and
the results obtained with LA, TM, and DLA are shown in the right
panel of Fig. 1. In this case, all three methods are in decent agree-
ment with the CCSD(T) reference, from a quadratic fit, we obtain
the τ → 0 limit: −135 ± 3 meV for LA, −127 ± 1 meV for TM, and−129 ± 2 meV for DLA.68 The figure also shows the time step error
associated with the three different methods. The first consideration
is that the better choice of the Jastrow has greatly improved the accu-
racy for any finite τ evaluation with respect to the case with J.far. The

FIG. 1. Interaction energy Eint for a water-benzene complex in the so-called “2-leg” configuration, for the geometry shown in the inset. The plots show FN-DMC evaluations
vs the time step τ, using LA, TM, and DLA. (Left plot) Results obtained using the Jastrow factor J.far in both the bound and the far configurations. J.far has been optimized
for the far configuration, i.e., for noninteracting water-benzene molecules. (Middle plot) Results obtained using a trial wave function without any Jastrow factor. In this case,
LA and DLA are equivalent. (Right plot) Results obtained with mixed Jastrow factor: for the noninteracting configuration, we used J.far, and for the bound configuration, we
used J.bound. The reference CCSD(T) value is −128 ± 1 meV.3

J. Chem. Phys. 151, 134105 (2019); doi: 10.1063/1.5119729 151, 134105-6

Published under license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

K̂ = − 1
2∇2. By substitution in the imaginary time Schrödinger

equation [Eq. (1)], multiplication by ΨT(R), and some algebraic
operations, we obtain

@

@t
f (R, t) = 1

2
∇2f (R, t) −∇ ⋅ (V(R)f (R, t))
− [EL(R) − ET] f (R, t), (6)

where V(R) = ∇ log�ΨT(R)�. Thus, the time evolution of f (R, t)
is given on the right-hand side (RHS) of Eq. (6). If the RHS only
had the first two terms, we would have a pure drift-diffusion pro-
cess, having a Green’s function that for a small time step τ and
for N electrons in the system can be approximated as GDD(R′
← R, τ) = 1(2πτ)3 N�2 exp�− [R′−R−τV(R)]22τ �. The last term on the RHS
of Eq. (6) is the branching term, and its associated Green’s function
is GB(R′ ← R, τ) = exp�−τ EL(R′)+EL(R)−2ET

2 �. Green’s function of
f (R, t) for a small time interval τ can be approximated48,49 as

GBDD(R′ ← R, τ) ≈ GB(R′ ← R, τ)GDD(R′ ← R, τ), (7)

which is exact for τ → 0. GBDD(R′ ← R, τ) can be used to approx-
imate Green’s function for an arbitrarily large time interval t.50
GBDD defines a branching-drift-diffusion process, as described, for
instance, in Ref. 1. The algorithms implemented in QMC packages
are usually a little more involved.51,110,111 However, there is no need
here to complicate further the picture.Wewill be concerned with the
results of DMC in the continuous limit τ → 0. In this limit, the only
bias in the DMC energy evaluation EFN is given by the FN approxi-
mation. In particular, EFN ≥ E0, with the equality reached if the nodes
of ΨT are exact.

D. Green’s function for Ĥ = K̂ + V̂L + V̂NL

When pseudopotentials are used, the potential term has non-
local operators V̂NL, and the Hamiltonian can be written as
Ĥ = K̂ + V̂L + V̂NL. If we consider the imaginary time Schrödinger
equation (1) and substitute Ĥ, we obtain the following time evolu-
tion of f (R, t):

@

@t
f (R, t) = 1

2
∇2f (R, t) −∇ ⋅ (V(R)f (R, t))
−�����
�K̂ + V̂L�ΨT(R)

ΨT(R) +
V̂NLψ(R, t)
ψ(R, t) − ET����� f (R, t). (8)

The drift and diffusion terms on the RHS are identical to Eq. (6), but
there is a complication in the branching term. Indeed, we cannot
calculate V̂NLψ(R,t)

ψ(R,t) , as we do not know the analytical form of ψ(R, t).
There is an alternative approach, which is to write the Green’s

function G(R′ ← R, τ) for Ĥ. Using the Zassenhaus formula, for
small τ, we can approximate e−τ(K̂+V̂L+V̂NL) with e−τV̂NL e−τ(K̂+V̂L), and
by substituting it into Eq. (4), we obtain

G(R′ ← R, τ) ∼ � TNL(R′ ← R̃, τ)∗GL(R̃← R, τ)dR̃, (9)

where GL(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′�e−τ(K̂+V̂L)�R� is Green’s function

for the local part of the Hamiltonian, which has been discussed in
Sec. II C, and TNL(R′ ← R, τ) ≡ ΨT(R′)

ΨT(R) �R′�e−τV̂NL �R� is Green’s

function of the nonlocal part of the potential. For small τ, we have
that TNL(R′ ← R, τ) ∼ δR′ ,R − τVR′ ,R, where δR′ ,R is the Dirac’s delta
and

VR′ ,R ≡ ΨT(R′)
ΨT(R) �R′�V̂NL�R�. (10)

Notice that VR′ ,R can be either positive or negative depending on
ΨT , V̂NL, R, and R′. Whenever VR′ ,R > 0 for some R′ ≠ R, then
TNL(R′ ← R, τ) < 0. The DMC algorithm needs to interpret the
Green’s function as a transition probability, but if TNL(R′ ← R, τ)< 0 for some R and R′, it cannot be a transition probability from R
to R′ (sign problem). Thus, the presence of V̂NL yields a sign prob-
lem in the DMC algorithm29,31 because it gives a Green’s function
G(R′ ← R, τ) which can have negative terms.

There is no direct solution to this problem, and as a con-
sequence, an approximation is introduced. As noted earlier, two
approaches are available: either to use the locality approximation
(LA)30 or Casula’s T-move approximation (TM).29,31 They are sum-
marized in Secs. II D 1 and II D 2.

1. Locality approximation in FN-DMC
The approach taken in LA is to approximate the unknown

quantity V̂NLΦ(R,t)
Φ(R,t) with V̂NLΨT(R)

ΨT(R) , which is the value of the nonlo-
cal potential localized on the trial wave function ΨT(R). By using
this approximation in Eq. (8), we obtain that the 3rd term on the
RHS is −[EL(R) − ET]f (R, t), and the equation becomes identical
to Eq. (6). Thus, Green’s function in LA is given by Eq. (7) and the
DMC algorithm is a branching-drift-diffusion process.

The major difference from Sec. II C is that we approximate
the Hamiltonian, which is no longer given by the FN Hamiltonian
ĤFN ≡ Ĥ + V̂FN , but by

ĤLA
FN ≡ K̂ + V̂L +

V̂NLΨT

ΨT
+ V̂FN , (11)

where the notation V̂NLΨT
ΨT

is used to indicate that the non-
local potential V̂NL has been localized using the function
ΨT(R). So, given a generic function ξ(R), we have V̂NLΨT

ΨT
ξ(R)

= ∫ dR′ΨT(R′)�R′�V̂NL�R� ξ(R)
ΨT(R) . Notice that ĤLA

FN has no nonlocal
potential term, i.e., the action of ĤLA

FN on the generic function ξ at
point R only depends on the value of ξ at R.

The ground state for ĤLA
FN is the projected wave function ΦLA

FN .
The expectation value of the energy ELA

FN can be evaluated using the
mixed estimator because V̂NLΨT

ΨT
ΨT(R) = V̂NLΨT(R), so ĤLA

FN �ΨT�= Ĥ�ΨT�. However, in general ΦLA
FN is different from the (unknown)

ground state ΦFN for ĤFN ; thus, ELA
FN ≠ EFN . In other words, with

LA we have lost the variationality of the approach because the error
introduced by this approximation can either be positive or nega-
tive, and ELA

FN is not, in general, an upper bound for E0. Only in
the (ideal) case of ΨT = ΦFN , we do have ĤLA

FN �ΦFN� = EFN �ΦFN�,
so ELA

FN = EFN . As a corollary, with the exact trial wave function,
ΨT = Φ, then we have that ELA

FN = E0. However, the trial wave
function having exact nodes is not a sufficient condition for having
ELA
FN = E0 as the LA depends on the overall trial wave functionΨT and

not just on its nodes.52 In other words, ELA
FN has both a FN error and a
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localization error. Mitas et al.30 showed that the error (including
both FN and localization) on the energy evaluation is quadratic in
the wave function error, i.e., ELA

FN − E0 = O[(ΨT −Φ)2]. Notice that
FN and localization errors add to the time step error and are present
also in the limit of zero time step.

2. T-move approximation in FN-DMC
In the T-move approach, the nonlocal Green’s function TNL

includes only the terms without sign-problems and the remaining
part of the nonlocal potential is localized in a similar manner to
LA. To this aim, the positive, V+

R′ ,R, and negative, V−R′ ,R parts, V±R′ ,R= VR′ ,R±�VR′ ,R �
2 , of the termVR′ ,R defined in Eq. (10) are used. The sign

problem arises from terms V+
R′ ,R, which have to be localized, while

the terms V−R′ ,R yield a TNL with non-negative sign. Details about
how this algorithm can be implemented are discussed in Refs. 29
and 31.

The corresponding T-move Hamiltonian is

ĤTM
FN ≡ K̂ + V̂L + V̂−NL + V̂+

NLΨT

ΨT
+ V̂FN , (12)

where the operators V̂+
NL and V̂−NL correspond to V+

R′ ,R and V−R′ ,R,
respectively. The projected wave function ΨTM

FN is the ground state
of ĤTM

FN , and since ĤTM
FN �ΨT� = Ĥ�ΨT�, the expectation value of the

energy ETM
FN can be evaluated using the mixed estimator. Similar to

the LA approach, the projected functionΦTM
FN is, in general, different

from the fixed node ground state ΦFN , but if the trial wave function
ΨT = ΦFN , then ETM

FN = EFN . If ΨT = Φ, then ETM
FN = E0, but if ΨT

has exact nodes but differs from Φ, then ETM
FN ≠ E0. Similar to LA,

TM depends on the overall trial wave function ΨT .53 Note that the
FN and localization errors add to the time step error and are present
also in the limit of zero time step.

The TM approach is computationally slightly more expensive
than LA and often has a larger time step error. However, it has two
advantages over LA: ETM

FN is an upper bound of the exact ground state
E0,54 and it is a more stable algorithm than the LA.

III. NEW APPROACH: DETERMINANT LOCALIZATION
APPROXIMATION IN FN-DMC

The major practical disadvantage of both LA and TM is that
the results are highly dependent on the Jastrow factorJ. This might
result in problems of reproducibility, especially between results from
different QMC packages, as the Jastrow factor is often expressed
in different and nonequivalent functional forms across the codes.
Moreover, the parameters of the Jastrow are affected by stochastic
uncertainty. In contrast, it is much easier to control the reproducibil-
ity of the determinant part of the wave functionD, which is generally
obtained from a deterministic method, e.g., DFT.

Therefore, we propose to use only the determinant part D

of the trial wave function to localize the nonlocal potential V̂NL.55
If we bear in mind that pseudopotentials are tested by develop-
ers using deterministic methods—density functional theory56,57 or
coupled cluster with single, double, and perturbative triple excita-
tions [CCSD(T)]58–61—our suggestion seems also quite reasonable
because they are not tested widely and systematically in the presence
of a Jastrow and within a DMC scheme.

In DLA, the FN Hamiltonian is

ĤDLA
FN ≡ K̂ + V̂L +

V̂NLD

D
+ V̂FN , (13)

and the associated projected wave function is ΦDLA
FN . In order to be

able to use the mixed estimator, we need to define the Hamiltonian

ĤDLA ≡ K̂ + V̂L +
V̂NLD

D
(14)

such that ĤDLA
FN �ΨT� = ĤDLA�ΨT� and

EDLA
FN = ∫ ΦDLA

FN (R)ΨT(R)EDLA
L (R)dR

∫ ΦDLA
FN (R)ΨT(R)dR , (15)

where the local energy is EDLA
L (R) = �R�ĤDLA

FN �ΨT��R�ΨT� . DLA becomes exact
in the limit of D → Φ, as HDLA

FN �Φ� = Ĥ�Φ� and EDLA
FN = E0. It

can be shown, along the lines of the argument of Mitas et al.,30
that the error EDLA

FN − E0 on the energy evaluation (including both
FN and localization) is O[(D − Φ)2]. Comparing with the corre-
sponding error within LA, it implies than the DLA error on the
absolute energy is typically expected to be larger than the LA error
as ΨT = D expJ is typically closer than D to Φ. On the other hand,
we suggest an alternative point of view: the DLA approach should
be seen as a modification of the PPs. PPs introduce an approxima-
tion in the Hamiltonian, whereas the remaining part of Ĥ comes
from first principles (see Appendix B). There is no proof showing
that PPs provide a better approximation of the core if the localiza-
tion is performed using a wave function with or without the Jastrow
factor. However, without the Jastrow, there are clear advantages in
terms of reproducibility of results and better error cancellation in
energy differences, as discussed below. In other words, we are not
concerned that EDLA

FN might be further from E0 than ELA
FN (or ETM

FN ) as
long as V̂L + V̂NLD

D
yields a good representation of the ionic potential

energy.
Within DLA, the quality of the fixed node energy EDLA

FN depends
exclusively on D. The Jastrow factor J does not affect the accu-
racy; the only influence of the Jastrow is on the efficiency, as it
will affect the time step errors and the variance of HDLA. In the
limit of zero time step, all calculations which use the same D will
provide the same energy, no matter what (if any) Jastrow factor is
used.62

The implementation of DLA is straightforward as it is a simpli-
fication of the LA algorithm. It implies the numerical integration of
D (instead of ΨT in LA) over a sphere to determine the nonlocal
potential energy V̂NLD

D
; see Eq. (C1) in Appendix C. The numer-

ical integration scheme employs quadrature rules; hence, a num-
ber of wave function ratios on the integration grids are evaluated
at every energy measurement.30 While in the calculations reported
in this manuscript, we used this simple implementation, it should
be noticed that DLA allows a more involved but much more effi-
cient implementation. Whenever D is used instead of ΨT , the inte-
grals in Eq. (C1) can be factorized into simpler integrals involving
the molecular orbitals defining D.24 Thus, all the nonlocal inte-
grals can be done analytically (e.g., analytical expressions have been
obtained by Hammond et al.24 under the assumption that the basis
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limit of zero time step, all calculations which use the same D will
provide the same energy, no matter what (if any) Jastrow factor is
used.62
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fication of the LA algorithm. It implies the numerical integration of
D (instead of ΨT in LA) over a sphere to determine the nonlocal
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ical integration scheme employs quadrature rules; hence, a num-
ber of wave function ratios on the integration grids are evaluated
at every energy measurement.30 While in the calculations reported
in this manuscript, we used this simple implementation, it should
be noticed that DLA allows a more involved but much more effi-
cient implementation. Whenever D is used instead of ΨT , the inte-
grals in Eq. (C1) can be factorized into simpler integrals involving
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stemming from the coexistence points are traced by
integrating the Gibbs-Duhem equation [55] with a second
order Runge-Kutta method. See Supplemental Material
[41], Sec. SIII A.
The numerical accuracy of the predicted phase bounda-

ries can be gauged from the consistency of the predicted
triple points (TPs). Each TP can be inferred in three
independent ways from the intersection of two boundary
lines between the three coexisting phases. The average of
these estimates defines a TP, and the standard deviation
gives the estimated error. From the TPs in Supplemental
Material [41], Table SV, we infer that the numerical
uncertainty of the calculated phase boundaries is less than
5 K in temperature and less than 0.02 GPa in pressure.
Overall, the DP phase diagram in Fig. 1(a) agrees well

with experiment. All the stable ice phases are predicted
correctly, with two exceptions, ice III and XV, which are
metastable in the DP model. The Ih-F coexistence line is
displaced by ≈40 K to higher temperature than experiment,
while the Ih-II line is displaced by ≈0.02 GPa to higher
pressure than experiment. Thus, the stability of Ih is
overestimated, consistent with the tendency of the
SCAN approximation to overestimate the hydrogen bond
strength [40]. On the other hand, the Ih-XI boundary is
predicted correctly, reflecting the close similarity of the
hydrogen bond configurations in the two systems. The shift
to higher pressure of the Ih-II boundary may contribute to

the metastability of ice III. The metastability of ice XV may
reflect a general difficulty of gradient corrected functionals
to predict the ground state structure of this ice form [3].
Within the accuracy of the DP model, competing phases
differing in free energy by ⪅ 1 meV=H2O should be
considered degenerate. This happens to IV and VI in part
of the stability domain of the latter (Supplemental Material
[41], Sec. SIII B). The coexistence lines for P⪆1 GPa
including the ice-fluid boundary, the VII-VII00 boundary,
and the VII-VII00-F TP are also in good qualitative agree-
ment with experiment. At pressures higher than reported in
Fig. 1, ice VII transforms into ice X [56]. This regime is
beyond the domain of validity of the present DP model and
is not investigated.
It is instructive to compare the DP phase diagram with

the one derived from one of the most accurate empirical
water models, TIP4P=2005 [17], which assumes rigid
molecules and is parametrized with experimental observa-
tions, such as, e.g., the temperature of maximal liquid
density at ambient pressure, the densities of ice II, III, and
V at different thermodynamic conditions, etc. As shown in
Fig. 1(b), TIP4P=2005 works well at low and intermediate
pressures. At higher pressures, however, significant devia-
tions from experiment affect the boundary lines between ice
VIII, VII, and VI. Moreover, the rigid molecule approxi-
mation does not allow ionized water configurations. At
high pressure and temperature TIP4P=2005 predicts a first-
order transition from ice VII to a plastic phase, in which the
BCC oxygen sublattice coexists with freely rotating mol-
ecules [61,62]. No experimental evidence has been found
so far for this phase, nor was such behavior observed in our
DP simulations.
Ionic phases.—According to the DP model, at low T, ice

VII is a molecular crystal with full proton disorder and
insignificant atomic diffusion. Upon heating, however,
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and XV (stable in experiment but metastable in model) are gray.
Experimental coexistence lines are from Ref. [57] (melting
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triangle indicates the postulated Ih-II-XI TP [59]. The two dashed
lines indicate the experimentally observed transitions Ih → XI
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VI-VIII-XV and the II-VI-XV TPs, respectively [3]. (a2) Phase
diagram at high T and P. The experimental melting lines are from
Ref. [60] and Ref. [13]. The VII-VII00-F TP is from Ref. [13].
(b) Phase diagram of TIP4P=2005 water [61].
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integrating the Gibbs-Duhem equation [55] with a second
order Runge-Kutta method. See Supplemental Material
[41], Sec. SIII A.
The numerical accuracy of the predicted phase bounda-

ries can be gauged from the consistency of the predicted
triple points (TPs). Each TP can be inferred in three
independent ways from the intersection of two boundary
lines between the three coexisting phases. The average of
these estimates defines a TP, and the standard deviation
gives the estimated error. From the TPs in Supplemental
Material [41], Table SV, we infer that the numerical
uncertainty of the calculated phase boundaries is less than
5 K in temperature and less than 0.02 GPa in pressure.
Overall, the DP phase diagram in Fig. 1(a) agrees well

with experiment. All the stable ice phases are predicted
correctly, with two exceptions, ice III and XV, which are
metastable in the DP model. The Ih-F coexistence line is
displaced by ≈40 K to higher temperature than experiment,
while the Ih-II line is displaced by ≈0.02 GPa to higher
pressure than experiment. Thus, the stability of Ih is
overestimated, consistent with the tendency of the
SCAN approximation to overestimate the hydrogen bond
strength [40]. On the other hand, the Ih-XI boundary is
predicted correctly, reflecting the close similarity of the
hydrogen bond configurations in the two systems. The shift
to higher pressure of the Ih-II boundary may contribute to

the metastability of ice III. The metastability of ice XV may
reflect a general difficulty of gradient corrected functionals
to predict the ground state structure of this ice form [3].
Within the accuracy of the DP model, competing phases
differing in free energy by ⪅ 1 meV=H2O should be
considered degenerate. This happens to IV and VI in part
of the stability domain of the latter (Supplemental Material
[41], Sec. SIII B). The coexistence lines for P⪆1 GPa
including the ice-fluid boundary, the VII-VII00 boundary,
and the VII-VII00-F TP are also in good qualitative agree-
ment with experiment. At pressures higher than reported in
Fig. 1, ice VII transforms into ice X [56]. This regime is
beyond the domain of validity of the present DP model and
is not investigated.
It is instructive to compare the DP phase diagram with

the one derived from one of the most accurate empirical
water models, TIP4P=2005 [17], which assumes rigid
molecules and is parametrized with experimental observa-
tions, such as, e.g., the temperature of maximal liquid
density at ambient pressure, the densities of ice II, III, and
V at different thermodynamic conditions, etc. As shown in
Fig. 1(b), TIP4P=2005 works well at low and intermediate
pressures. At higher pressures, however, significant devia-
tions from experiment affect the boundary lines between ice
VIII, VII, and VI. Moreover, the rigid molecule approxi-
mation does not allow ionized water configurations. At
high pressure and temperature TIP4P=2005 predicts a first-
order transition from ice VII to a plastic phase, in which the
BCC oxygen sublattice coexists with freely rotating mol-
ecules [61,62]. No experimental evidence has been found
so far for this phase, nor was such behavior observed in our
DP simulations.
Ionic phases.—According to the DP model, at low T, ice

VII is a molecular crystal with full proton disorder and
insignificant atomic diffusion. Upon heating, however,
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Gray: Experiments
Red: ab-initio DFT (SCAN) + machine learning
Blue: semiempirical force field (TIP4P/2005)

No stable phases III and XV
in the model
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No stable phases III in the model
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DMC-ICE13 allows for a qualitative prediction of the V-III transition pressure 

Approximation

- Ice XIII instead of disordered ice V;
- Neglecting temperature 

contribution, ZPE, and considering 
the zero pressure volumes;

- The condition that a functional 
needs to satisfy to predict the 
stability of ice III is
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Ø Generally observed a good agreement between the CCSD(T) and the 
FNDMC (with a Slater-Jastrow guide function) evaluation of non-covalent 
interactions.

Ø Disagreement, when observed, could be explained from know issues, such 
as small basis in CCSD(T) or optimization / timestep / size-consistency issues 
in FN-DMC.

Ø Recently observed a disagreement in large complexes not coming from the 
above issues 

Y.S. Al-Hamdani, P.R. Nagy, A. Zen, D. Barton, M. Kállay, J.G. Brandenburg, A. Tkatchenko, Interactions between Large 
Molecules: Puzzle for Reference Quantum-Mechanical Methods, Nature Communications 12, 3927 (2021).
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Is FN-DMC or CCSD(T) having accuracy issues?

There is an inconsistency between 
CCSD(T) and FN-DMC

in some systems 
with pi-pi interactions 
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[1] uses CASINO, DMC with PPs testing LA/TM/DLA; [2] uses QMCPACK, DMC with all-electrons
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ionization energies (Sec. IV B), stability (Sec. IV C), and efficiency
(Sec. IV D). A reader already familiar with DMC can skip to Sec. III.
We draw our final conclusions in Sec. V.

II. OVERVIEW ON FIXED NODE DIFFUSION
MONTE CARLO

A. The trial wave function
The trial wave function has a critical role in determining the

accuracy of FN-DMC. A QMC trial wave function is the product
ΨT(R) = D(R) ∗ expJ(R) of an antisymmetric function D(R)
and a symmetric (bosonic) function expJ(R), called the Jastrow
factor, where R is the electronic configuration. The function D(R)
is typically a single Slater determinant, especially when large systems
are simulated. However, it is worth mentioning that if the system
under consideration is not too large (say, generally not more than a
few atoms) better functions can be used, such as multideterminant
expansions of Slater determinants,34–39 valence-bond wave func-
tions,40 the antisymmetrized geminal product,41,42 the Pfaffian,43
and others (see, for instance, the review by Austin et al.44). More-
over, the backflow transformation45–47 can be employed to further
improve any of the aforementioned ansätze, at the price of a signif-
icantly larger computational cost. The Jastrow factor describes the
dynamical correlation between the electrons, by including explicit
functions of the electron-electron distances. In DMC, a property of
interest is the nodal surface of ΨT , which is the hypersurface cor-
responding to ΨT(R) = 0, for real wave functions, or the complex
phase of ΨT for complex wave functions. They are both determined
by D(R) as the Jastrow factor can only alter the amplitude of ΨT .
The Jastrow factor J is implemented differently in different QMC
packages.

When large and complex systems are simulated, such as
adsorption on surfaces or molecular crystals, the most common
practice is to obtain D from a deterministic approach, usually DFT,
and to decide a functional form for J and optimize, within the
variational Monte Carlo (VMC) scheme,1 the parameters minimiz-
ing either the energy or the variance. Since D comes from a deter-
ministic method, there is no reproducibility problem here, and in
taking energy differences we can usually expect a large cancella-
tion of the FN error. On the other hand, J is optimized stochas-
tically, so its parameters are affected by an optimization uncer-
tainty. Dealing with this uncertainty becomes increasingly challeng-
ing as the system gets larger. Moreover, a new optimization of J

is needed for every distinct orientation of the molecular systems,
and optimizing J so frequently is tedious and time-consuming,
and, due to the stochastic nature of the optimization procedure,
can lead to Jastrow factors of different qualities, resulting in less
than optimal cancellation of errors. A human supervision of the
optimization is always highly recommended, if not necessary. The
optimization is responsible for making QMC labor intense and
nonautomatic.

B. Diffusion Monte Carlo
The DMC algorithm with importance sampling performs

a time evolution of f (R, t) = ΨT(R)ψ(R, t), where ΨT(R)
is a trial wave function (described in Sec. II A), R are the

3N-dimensional electronic coordinates, and ψ(R, t) is the solution
at time t of the imaginary time Schödinger equation,

− @

@t
ψ(R, t) = �Ĥ − ET�ψ(R, t), (1)

where Ĥ is the Hamiltonian and ET is a trial energy, with initial con-
dition ψ(R, 0) = ΨT(R) and converging exponentially to the exact
ground state Φ(R) for t → ∞. Thus, limt→∞f (R, t) = ΨT(R)Φ(R).
Since Φ is an eigenstate for Ĥ, the ground state energy E0 can be
calculated using the mixed estimator,

E0 = �Φ�Ĥ�ΨT��Φ�ΨT� = ∫
Φ(R)ΨT(R)EL(R)dR
∫ Φ(R)ΨT(R)dR , (2)

where EL(R) = �R�Ĥ�ΨT��R�ΨT� is the local energy in the electronic configu-
ration R for the trial wave function ΨT .

The time evolution of f (R, t) follows from the imaginary time
Schödinger equation (1), which in the integral form leads to

f �R′, t + τ� = � G�R′ ← R, τ�f (R, t)dR, (3)

where τ is the time step and G(R′ ← R, τ) is the Green function for
the importance sampling, which is defined (symbolically) as

G(R′ ← R, τ) ≡ ΨT(R′)
ΨT(R) �R′� exp(−τĤ)�R�. (4)

Thus, by starting from f (R, 0) = ΨT(R)2 and performing an evolu-
tion according to the Green function G(R′ ← R, t), we are able to
assess expectation values of the exact ground state Φ,

Φ(R′)ΨT(R′) = lim
t→∞� G(R′ ← R, t)ΨT(R)2dR. (5)

This is the process implemented in the DMC algorithm. In fermionic
systems, the fixed-node (FN) approximation is typically introduced,
so the FN Hamiltonian ĤFN ≡ Ĥ + V̂FN , where V̂FN is an infinite wall
at the nodal surface of ΨT , is used. Further details are reported in
Appendix A.

TheHamiltonian Ĥ is the sum of the kinetic and potential oper-
ators K̂ and V̂ , respectively. In all-electron calculations, the poten-
tial operator V̂ is local, V̂ = V̂L. However, in general, there is the
need to deploy pseudopotentials to represent the core electrons of
the atoms and reduce the computational cost of the calculation, see
Appendix B. In this case, the potential term has both local and non-
local operators: V̂ = V̂L + V̂NL. The presence of nonlocal operators in
the potential complicates the formulation of the DMC algorithm and
forces the introduction of a further approximation. In the following,
we will first consider the simple case of a potential with only local
operators, Sec. II C, and later we will consider the case of potential
term with nonlocal operators, Sec. II D.

C. Green’s function for Ĥ = K̂ + V̂L

The simplest case is when the Hamiltonian has only a local
potential term; thus, it can be written as Ĥ = K̂ + V̂L, with
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General diagonalization 
of the symmetric matrix G

(S is the overlap matrix)

yields

where we can assume







Lambda’s of virtual orbitals are zero in the single Slater determinant. 
If we allow them to be optimized we have a multideterminant wave function which could improve the nodal surface!



Single Slater determinant �0⟩

1. Preparation of ansatz
Construct an initial JAGPn ansatz using 

natural orbitals or molecular orbitals
Schrödinger Equation





approximate solution 

using Hartree-Fock (HF), 


density functional theory (DFT), 

or 2nd order Møller–Plesset 
perturbation theory (MP2)

�H� = E�
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Figure 1: Panel a: Schematic illustration of the FNAGPAS scheme. We perform a prelim-
inary mean field calculation to obtain molecular orbitals (MOs), followed by a correlated
calculation yielding natural orbitals (NOs). The AGPn ansatz correspond to a multideter-
minant expansion built on the NOs and depending on the coe�cients �i associated to each
orbital i and optimized in order to minimise the FN energy. Panel b: Flowchart illustrating
the FNAGPAS scheme workflow.
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role in avoiding misdirection of the nodes optimization.

4.3 The FNAGPAS scheme is size-consistent

We have shown that the AGPn ansatz is able to gain correlation energies at the FN level using

very few variational parameters. In addition to their role in improving the nodal surface, FN

gradients also appear to be crucial when calculating binding energies of molecules, preserving

size consistency. As shown in Table 1 and discussed hereafter for the particular case of the

water-methane dimer, this is not the case when VMC gradients are used. Therefore, when

calculating binding energies of molecules, the use of VMC gradients in the JAGPn ansatz

gives incorrect results, while the use of FN gradients plays an crucial role on it.

Table 1: FN binding energy Eb and size consistency energy error ESCE, computed with
LRDMC a ! 0, as obtained with the JSD, JAGPn and JAGP wave functions. For JAGPn
we consider both the case of using VMC and FN gradients to optimize the nodal surface.
The latter is the scheme dubbed FNAGPAS in this work.

Ansatz Nodes Opt. Eb (meV) ESCE (meV)
JSD - -27(2) -1(1)

JAGPn VMCopt -46(2) 10(2)
JAGPn FNopt -29(2) -2(2)
JAGP VMCopt -41(3) 11(3)

CCSD(T) - -27 0

Table 1 contains the binding energies of the methane–water dimer computed with the

JSD ansatz, with the JAGPn ansatz optimized using either VMC or FN gradients (the

FNAGPAS approach), and with the JAGP ansatz optimized with VMC gradients. The

binding energy is evaluated as the energy di↵erence between the dimer and the sum of the

energies of the two molecules: Eb = Ewater-methane � Ewater � Emethane. The reference value

for the binding energy of the water-methane dimer, -27 meV, was computed by CCSD(T)
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Binding energy
Eb = E(water+methane) - E(water) - E(methane)



• CASINO 
• QMCPACK
• TurboRVB
• QMC=Chem
• QMeCha
• PyQMC
• Amolqc 
• QWalk
• CMQMC 
• CHAMP Cyrus Umrigar's version 
• CHAMP Claudia Filippi's version

Use Slater-Jastrow ansatz and 
same geometry, pseudo-potential (ccECP), basis set (ccECP-ccpVTZ), determinant (from Perdew-Zunger LDA),
different implementations of Jastrow factors and FN-DMC algorithms.







Codes comparison on total energies and binding energies (Eb):
• LA: not a good agreement
• TM: agreement (observed a posteriori)
• DLA and DLTM: agreement (by construction)
• Eb evaluations with TM, DLA and DLTM are consistent
• Eb evaluations with LA might be inconsistent, depending on 

Jastrow implementation. Use of LA should be discouradged.
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