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Motivations

• Why computing energy gaps?

Energy gaps are important information about the electronic excitations which are often used in 

experiments to probe the underlying electronic structure of systems.

Electronic spectra are routinely measured in various spectroscopies, and theoretical methods to 

compute spectra are available mainly based on DFT and Many Body Perturbation Theory (MBPT).

• Why computing energy gaps with QMC?

QMC is not able to provide electronic spectra directly since this requires computing real time 

dynamics (dynamical properties).

Instead QMC is a great method for ground state properties (mainly energy, but also structural 

properties). Can we extend QMC to compute energy gaps and electronic excitations?

This will allow to include electronic correlation in the excitation energies in a non-perturbative 

fashion and provide more accurate values.



Outline

• Energy gaps for static external fields (ideal crystals)

• Finite size effects

• Extension to quantum and thermal crystals

• applications:

Carbon and Silicon

High Pressure hydrogen



Energy gaps: basic definitions

Charged (single-particle) excitations: fundamental gap of insulators (quasiparticle)Δqp = E0(Ne + 1) + E0(Ne− 1)− 2E0(Ne)

E0(Ne) = ground state energy of a system with Ne electrons

Neutral (particle-hole) excitation:Δn = E1(Ne) − E0(Ne)

E1(Ne) = lowest excited state of a system with Ne electrons

in the first case only GS energies are involved, good for QMC

in the second case an excited state is involved, apparently bad for QMC



Fundamental (quasiparticle) gap

μ+ = E0(Ne + 1)− E0(Ne)

μ− = E0(Ne) − E0(Ne− 1)

chemical potential for adding one electron

chemical potential for removing one electronΔqp = μ+ − μ− ≠ 0 for gapped systems

PHYSICAL REVIEW B 101, 085115(2020)
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Electronic band gaps from quantum Monte Carlo methods

Yubo Yang (h \ â ) ,1 Vitaly Gorelov,2 Carlo Pierleoni ,2,3 David M. Ceperley,1 and Markus Holzmann4,5

In the GrandCanonical ensemble, V and are independent variables while the equilibrium Ne corresponds to 

the minimum of the Grand Potential

where indicate that we are using Twisted Boundary Conditions to minimise FSE :Ȳȋr1 + Lxx̂) = eiθxȲȋr1)

Indicating with N̄e(θ, μ) the optimal number of electron at given (θ,μ), the equilibrium electron and energy 

densities are respectively

ȳȋV, μ) =
1

VMθ
∑
θ

Ne
0 emin E (N , θ) − μNe[ ]

ne(μ) = (MθV)−ͳ∑ N̄e(θ, μ)

θ

e0(μ) = (MθV)−ͳ∑ E0(N̄e(θ, μ), θ)

θ



Hydrogen Ideal crystal C2/c-24 P=248GPa, Np = 96, Ne = Np + n

Total energy (hartrees) vs twist angle (sorted for n=0) for n ∈ [−8; + 8]
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(a) (b)

FIG. 1. GCTABC analysesof the C2/c-24 structureof solid hydrogenat rs= 1.38 (234GPa). (a) The electron density, ne, asa function
of the chemical potentialµ obtained from HSE functionalin comparisonto QMC; the inset illustrates the energy density, e0, asa function of
µ from HSE functional. (b) Energy density, e0 , asa functionof ne using QMC; the inset shows the derivative discontinuity, whereδne is the
changeof the electronic density with respectto the insulating state. Size corrections,asdiscussedin the text, are included.

Value of the gap can be extracted from the size of the incompressible region (plateau) or from the kink in the 

energy density at ne = np

qpΔ = μ+ − μ− =
dۦe0ۧθ
dۦn̄ۧθ

n=0+

dۦe0ۧθ–
dۦn̄ۧθ

n=0−

Hydrogen Ideal crystal C2/c-24 P=248GPa, Np = 96, Ne = Np + n

At equilibrium
∂E0∂Ne

= μ⟹ E0(Ne, θ) − E0(Ne− 1,θ) ζ μ ζ E0(Ne + 1,θ) − E0(Ne, θ)



Finite size effects (FSE): total energy

• Extended systems are considered in Periodic Boundary Conditions.

• Energy and other properties for the finite systems are affected by FS error that need to be understood 

and corrected in order to provide accurate results.

• Extrapolation to the infinite size system should be supported by a theoretically derived behaviour 

because an empirical brute force characterisation is often uncertain: often one cannot explore a wide 

range of sizes and it is not clear whether the asymptotic (power law) behaviour is already reached. 

Moreover the results will be dominated by the smallest size systems with smaller error bars.

• Empirical observed behaviours:

E(N) ∼ 1/N∼ 1/L3 vs E(N)∼ 1/N1/3 ∼ 1/L

• In this paper we studied in details the various corrections to the total energy

PHYSICAL REVIEW B94, 035126(2016)

Theory of finite size effects for electronic quantum Monte Carlo calculations of liquids and solids

Markus Holzmann,1,2,3 RaymondC. Clay III, 4 Miguel A. Morales,5 Norm M. Tubman,4 David M. Ceperley,4

and Carlo Pierleoni6

Two types of contributions:

• single electron contributions are treated by twisted boundaries (averaging over) and by Grandcanonical 

calculations

• two-electron contributions are encoded in the small-k behavior of the el-el structure factor See(k→ 0)

• corrected energies are closed to convergence already for 100 electrons in metallic hydrogen ( ∼ 0.5 mH/el)



Size correction for gaps (#1)

• As for the total energy, single electron size effects are corrected by TABC.

• Two-particle size effects are encoded in the SNe±1(k→ 0).

• We proved that

S±k = (Ne± 1)SNe±1 e Ne ± 2(k) − N S (k)∼ α + O(k ); α± ∝ ± ϵ−ͳk→Ͳ

FIG. 2. Changein the static structure factorasanelectron (upper curves)or a hole (lower curves)is addedto the insulating system with N
atoms. The lines are fitsto the data points. The horizontal lines show the expected kѧ 0 limit basedon the experimental dielectric constants.
We have used c= 0.41 for C and c= 0.57for Si.

•

• Kinetic energy correction from correlations: Δ′Δe ≃ α±c
•

Δe 2 L
Potential energy correction to the gap: Δ ≃ ± α |vM | ∼ 1

; Mv = Madelung constant ∼ 1 ∼
L N

|vM|

2

ϵk→Ͳ|vM| 1
Total correction: Δ∞ − ΔV ≃ + O

( V)



Size correction for gaps (#2)

Next to leading order corrections δΔN comes from twistss
corrections to two-particle correlations. This are unessential

for total energies, but important for the gaps since gaps values 

are of the order of total energies corrections for the system 

sizes under considerations.

FIG. 4. Fundamental gap before and after finite-size corrections.
ωN is the DMC gap from a simulation with N atomsin the su-
percell without any finite-size correction,vM/ϵ is the leading-order
Madelung correction using the experimental valueof ϵ−1, δωN is thes

next-to-leading-order density correction, whichis relatedto the static

spartof the structure factor. The lineis a fit to ωN + δωN.

TABLE I. Energy gaps obtained from GCTAB QMCin eV. The
bare gap,ωN , was calculated fromEq. (1) for a finite supercell con-
taining N atoms. The leading-order finite-size corrections are given
by the screened Madelung constants|vM |/ϵ, the next-to-leading
order by the twist correctionof two-particle density correlations,
δωs . We used the experimental valueof ϵ for C and Si (5.7 and
11.7, respectively) and the value18.8 for H2 extracted from S(k).
Finite-size corrections were also appliedto the band edges,µ±.
The estimateof the gapin the thermodynamic limitis ω∞ = ωNe +

|vM|/ϵ + δωs. Fromour LDA analysis,weestimate a systematic bias
of ∼0.1 eV from the finite twist grid. This biasis larger than the
statistical error.SJindicates Slater-Jastrow trial wave function, while
BF indicates backflow. The lattice constantsof carbon and silicon are
3.567Å and 5.43 Å, respectively.

∞ ∞rs N ωN |vM|/ϵ δωs µ− µ+ ω∞

H2 (BF) 1.38 96 3.3(1) 0.40 0.020 6.9(1) 10.7(1) 3.8(1)

1.34 96 2.4(1) 0.20 0.018 8.6(1) 11.2(1) 2.6(1)

C (BF) 1.318 8 3.9(1) 2.01 0.69 11.5(1) 18.1(1) 6.6(1)

C (SJ) 1.318 8 4.0(1) 2.01 0.69 11.5(1) 18.2(1) 6.7(1)
64 5.8(1) 1.00 0.02 11.9(1) 18.7(1) 6.8(1)

Si (BF) 2.005 8 0.6(1) 0.64 0.55 5.2(1) 6.9(1) 1.7(1)

Si (SJ) 2.005 8 0.6(1) 0.64 0.58 5.2(1) 7.0(1) 1.9(1)
64 1.4(1) 0.32 0.08 5.5(1) 7.3(1) 1.8(1)
216 1.6(1) 0.21 0.01 5.6(1) 7.4(1) 1.8(1)



Comparison with experiments for Si and C

Our values are larger than experimental determinations:

TABLE II. Extrapolated band gapof Si and C from backflow
DMC calculations,∆BF comparedto the experimental values (exp).
Wetabulated two main corrections: the difference between the gapof
an all-electron (AE) and the pseudopotential (PP) calculation within
GWcalculations, andtheneglectof electron-phonon coupling(e-ph).

∆BF AE - PP e-ph exp

C 6.6(2) −0.26 (G0W0) [54] −0.6 (GW) [56] 5.48 [67]
Si 1.7(1) −0.25 (G0W0)[54] −0.06 (DFT) [57] 1.17 [67]

Pseudopotential effects and electron-phonons effects reduces the gap. 

Comparison with experiment is not conclusive.



• Excellent agreement with GW gaps from McMinis (same structures)

• Good agreement with previous QMC estimates (Azadi et al, PRB 2017) but …
• other GW calculations predict smaller gap (1-2 eV smaller) but use different structural optimization.

V. Gorelov, M. Holzmann, DM Ceperley and C. Pierleoni, PRL 124, 116401 (2020).

(structures optimized with vdW-DF)

Phase III

QMC+scissor correction and size 

extrapolation (2018)

Phase IV

Hydrogen fundamental gap for ideal structures (Np = 96)



Neutral (particle-hole) gap

• In an ideal crystal 

symmetry

• Assuming the ground state is at k = 0, any k ≠ 0 in the Brillouin zone is an excited state andΔn = min Ek(Ne) − E0(Ne)
k≠0

therefore, likewise the fundamental gap, even the neutral gap can be obtained from GS calculations 

with different crystal momentum. In the TL, k becomes a continuum and, for a normal band insulator, 

even the vertical gap could be obtained by extrapolation.

• With TABC, the twist is a second quantum number and eigenstates can be labeled by k, θ. The GS 

energy, using Mθ twists, is

Ekθ(θ, Ne) = GS energy of a system at kθ, corresponding to minimum of the GS energy at

• Extending the above definition, the neutral gap is obtained asΔn = min [Ekθ+q(θ, Ne) − Ekθ(θ, Ne)]
θ,q≠Ͳ

where q is a reciprocal space vector compatible with the twist grid (finite crystal momentum).

e

ik⋅t
k 1 2 N k 1 2Ȳ (r + t, r + t,… , r + t) = e Ȳ (r , r ,… , rNe

) t crystal

0e =
1

MθV ∑ Ekθ(θ, Ne)

θ

V. Gorelov, Y. Yang, M. Ruggeri, D.M. Ceperley, C. Pierleoni and M. Holzmann, Cond. Mat. Phys. 26, 33701 (2023).



Example: Carbon diamond
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Figure 1. (Colour online) Left-hand: DFT-LDA band structureof carbon diamond. Right-hand: Brillouin
zoneof diamond structure with the selected path for band structure plot.

Table 1.Neutral gap,∆n from DMC calculationsof carbon diamondin a supercell containing N= 8 and
64 atomsfor Г – X andГ – Г transitions, comparedto the corresponding quasiparticle band gaps∆QP 

from [14].
N k ∆n(k) ∆QP (k)
8 Г → X

Г → Г
4.565(6)
6.265(6)

4.59(2)

64 Г → X
Г → Г

6.04(2)
7.64(2)

5.98(4)

Figure 2. (Colour online)Difference between the excited and ground state fluctuating structure factorfor
carbon,δS(k). Blue and orange: neutral excitationsfor Г – X andГ – Г. Black: difference of structure
factors from quasiparticle excitationsfor addition,δS+ (k), (upper branch) and removal,δS– (k), (lower
branch) from [14]. Left-hand: 8 atoms, right-hand:64 atoms. The lines are fitsto the data pointsof the
corresponding color. Symbols with crosses are includedin the fit. From our anaytical analysis,we expect
δS(k) ≈ δS+ (k) + δS– (k) for k → 0. Valuesfor small k are likelyaffected by a larger uncertainty,in
particularfor the larger system. Dotted horizontal lines indicate zero.

• Finite size effects are similar to the 

fundamental gap if excitation are 

represented by extended DFT orbitals

• Exciton localization can only be obtained

by more complex wave functions. If ℓX
represent the exciton localisation length,

we expect negligible size effect ( ∼ 1/N)

for L η 2ℓX.

• a sign of this will be in δS(k→ 0) = 0

Δnȋ∞Ȍ − Δn(L) ≃ ~
|vM| 1

ϵ L



Thermal and quantum crystals

When

β

0

S[R(Ĳ)] = dĲ
ℏ2

∫ (

dR(Ĳ)
[ 2M dĲ

2

)
+ E0(R(Ĳ), Ne)]

R(Ĳ) are the proton positions and E0(R(Ĳ), Ne) the BO energy for the system with Np protons and Ne 

electrons.

When Ne ≠ Np, we have

Gorelov, Holzmann, Ceperley and Pierleoni, PRL 124, 116401 (2020)

We need to include nuclGeoarreloevf,feCceptserlseuy,cHholazmsaznen raon-dpPoieinrletoanni,dJ. tChheermmPahlysm. 1o5t3io, 2n3.4117 (2020)

Zero-point effects (quantum nuclei) are essential for hydrogen.

Both effects are treated by representing nuclei (protons) by Feynman Path Integrals in imaginary time. 

In the canonical ensemble we write

Z(Ne) = e−βF(Ne) = ∫ �R(Ĳ)e−S[R(Ĳ)]

where the action is defined as

Z(Ne) =
pZ(N )

e−β[F(NeȌ−F(Np)] = ۦ e
β
0 0 e− ∫ dĲδE (R(Ĳ),N )ۧ ; δE0(R, Ne) = E0(R, Ne) − E0(R, Np)

ı2(Ne)

2

β

|Ne− Np| ≪ Np ⟹ |δE0(R, Ne)| ≪ |E0(R, Np)| ⟹ F(Ne) − F(Np) ≃ ,δE0(R(0)ۦ Ne)ۧ −
with

ı2(Ne) = ∫ dĲۦδE0(R(Ĳ), Ne)δE0(R(0), Ne)ۧc



Adding or removing a single electron, we obtain the chemical potential from the free energy differences

μ± = ± [F(Np ± 1)− F(Np)] ⟹ Δqp = μ+ − μ−
hence the terms ı2(Np ± 1) contributes with opposite sign to the gap and largely cancels providingΔqp ≃ δE0(Npۦ + 1)ۧ − δE0(Npۦ − 1)ۧ
In practice we need to replace the ground state energy density for the ideal crystal with the average 

internal energy density for the thermal and quantum crystal

qpΔ = μ+ − μ− ≃ du(n̄(μ))

dn̄(μ)
0+

du(n̄(μ))–
dn̄(μ)

0−

FIG. 4. Mean electron density from QMC-CEIMC calculations (orange solid line)
and the integratedDOScomputedwith the HSEdensity functional (orangedashed
line) for the C2/c-24 hydrogen crystal at 248 GPa and 200 K plotted together with
theRQMCelectron density for aperfect hydrogen crystal (blue line).

Gap reduction by NQE (and temperature) in 

high pressure hydrogen



Hydrogen phase diagram
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Reflective HTransparent H2 Opaque H2

205 GPa 415 GPa 495 GPa

Science355, 715–718 (2017) 17 February2017

Semimetallicmolecularhydrogenatpressure
above350GPa

M. I.Eremets *,A. P.Drozdov, P.P.KongandH.Wang

Observation of the
Wigner-Huntington transition
to metallic hydrogen

Ra nga P. Dia s and Isaac F . Silvera*

Nature Physics (2019)

electrical conductivity measurements

Nature | Vol577 | 30 January2020 | 631
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Inelastic X-ray spectroscopy

PHYSICAL REVIEW LETTERS 126, 036402 (2021)Probing the Electronic Band Gap of Solid Hydrogen 
by Inelastic X-Ray Scattering up to 90 GPa

,4
Bing Li,1 Yang Ding,1 Duck Young Kim,1 Lin Wang,1,2 Tsu-Chien Weng,1,3,* Wenge Yang ,1 Zhenhai Yu,1

Cheng Ji ,1,4 Junyue Wang,1 Jinfu Shu,1 Jiuhua Chen,5 Ke Yang,6 Yuming Xiao,4 Paul Chow,4 Guoyin Shen

Wendy L. Mao,7,8 and Ho-Kwang Mao1,†
1

Open circles — theoretical calculations:

1) P63/m structure optimized with DFT-BLYP

2) Band structure from DFT-HSE06

3) nuclear thermal and quantum effects neglected

4) but molecules in phase I rotates !!!

FIG. 3. (a) IXS spectra of solid hydrogen at high pressures from
6.6 to 90.2 GPa. The inset photomicrograph shows the 100 μm

hydrogen sample at 90.2 GPa. (b) The band gap of solid hydrogen

determined at the breaking points of the slopes of the IXS spectra

(illustrated in the insets); blue, experiments at APS; red, experi-

ments at SSRF; seven different solid symbols represent separate

DAC IXS experiments; open square, the zero pressure

(<10−7 torr), low temperature (2 K) threshold energy from

Ref. [11]; open circles, theoretical calculations; solid line, linear

regression of the IXS experimental data.

T=300K; 5GPa < P < 90GPa

FIG. 4. Threshold energy of solid hydrogen from IXS as a

function of density and pressure. The open square corresponds to
the zero pressure (<10−7 torr), low temperature (2 K) threshold

energy from Ref. [11]. Open circles represent the data from

theoretical calculations in this work. Filled black circles are IXS

data from this work compared with experimental data from Van

Straaten [12] (upward triangles), Hemley [13] (downward tri-

angles), Garcia [14] (left triangles), Howie [15] (right triangles),

Goncharov [16] (hexagons), Loubeyre [17] (diamonds), Zha [18]

(stars), and Loubeyre [6] (open diamonds). The shade areas show

the scattering of the data set with the same color hues. The dotted

line shows the trend of band-gap closure as a guide for the eye.



• In the fixed node approximation, the accuracy depends on the form of the many body trial 
wave function.

• Slater-Jastrow form:

• U(R|S) is a (one-body + two-body + three-body + ...) correlation factor (bosonic).

• ∑ is a Slater determinant of single electron orbitals

• The nodes are determined by the form of the orbitals only. They are the most important 
part of the trial function since the nodes are not optimized by projection.

• Hydrogen trial function

• Single electron orbitals from DFT (with various approxs) for each proton configuration.

• Analytical electron-electron and electron-proton backflow transformation (BF) to 
improve the nodes [Holzmann, Ceperley,Pierleoni,Esler PRE 68, 046707 (2003)].

• Analytical form for the 1-body and 2-body Jastrow from RPA (Gaskell,1967)

• Addition of numerical 1-body, 2-body, 3-body Jastrows and backflow terms

• few variational parameters to be optimized (on selected configurations only).

 variational parameters only ! effect of optimization: ~ mH/at on the energy

~40% on the variance

Trial wave functions for hydrogen

ΨT (R | S ) = exp [−U (R |S ) ] Det
“
Σ Ѧ ”

Det
“
Σ Ѩ ”

θk(→xi , ıi|S)



Hydrogen phase diagram
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Melting of Phase I up to 200GPa
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Nuclear quantum and thermal effects on the fundamental gap of H

• The fundamental gap closes between 340GPa and 380GPa, depending on structure and 

temperature (temperature dependence is small).

• The gap reduction (~2-2.5eV) mainly comes from nuclear quantum effects.

• Qualitative agreement with experiments finding semi-metal at 360GPa (Eremets 2019).

• PIMD-vdW-DF2 is less “metallic” than QMC, while PIMD-HSE is more “metallic”(Morales 2013).

thermal crystals Ideal crystals



QMC gaps: comparison with experiments

• Experimental indirect-gaps from Tauc analysis are slightly larger than our predictions.

• Experimental direct gap is associated with the complete infrared adsorption

• Loubeyre’s latest experiment claims an abrupt collapse of the direct gap at 425GPa which is 

reversible upon releasing pressure.

• We cannot discuss this since our structures from CEIMC are dynamically stable.

• Excellent agreement for the direct gap, for C2/c-24 structure

• Recente work by Monacelli et al. based on the SSCHA (and QMC corrections) suggests that the 

observed absorption is related to a structural transition to a metallic Cmca12 structure.



Inelastic X-ray spectroscopy

PHYSICAL REVIEW LETTERS 126, 036402 (2021)
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Open circles — theoretical calculations:

1) P63/m structure optimized with DFT-BLYP

2) Band structure from DFT-HSE06

3) nuclear thermal and quantum effects neglected

4) but molecules in phase I rotates !!!

FIG. 3. (a) IXS spectra of solid hydrogen at high pressures from
6.6 to 90.2 GPa. The inset photomicrograph shows the 100 μm

hydrogen sample at 90.2 GPa. (b) The band gap of solid hydrogen

determined at the breaking points of the slopes of the IXS spectra

(illustrated in the insets); blue, experiments at APS; red, experi-

ments at SSRF; seven different solid symbols represent separate

DAC IXS experiments; open square, the zero pressure

(<10−7 torr), low temperature (2 K) threshold energy from

Ref. [11]; open circles, theoretical calculations; solid line, linear

regression of the IXS experimental data.

T=300K; 5GPa < P < 90GPa

FIG. 4. Threshold energy of solid hydrogen from IXS as a

function of density and pressure. The open square corresponds to

the zero pressure (<10−7 torr), low temperature (2 K) threshold

energy from Ref. [11]. Open circles represent the data from

theoretical calculations in this work. Filled black circles are IXS

data from this work compared with experimental data from Van

Straaten [12] (upward triangles), Hemley [13] (downward tri-

angles), Garcia [14] (left triangles), Howie [15] (right triangles),

Goncharov [16] (hexagons), Loubeyre [17] (diamonds), Zha [18]

(stars), and Loubeyre [6] (open diamonds). The shade areas show

the scattering of the data set with the same color hues. The dotted

line shows the trend of band-gap closure as a guide for the eye.



Cristalline hydrogen in Phase I: QMC and MBPT (GW-BSE)

Reference values for zero pressure are 

from

Inoue et al., 1979 as cited by 

Loubeyre et al, 2002

- triangle is a molecular excitation

- circle an interband transition

- At low compression neutral and QP gaps 

differ, the former agreeing with 

experiments, the latter extrapolating to the 

interband transition at ρ0.

- At higher compression the two gaps are 

much closer and agree well with 

experiments (possible exp bias).

- In general good agreement between 

QMC and BSE gaps.

- Size effects are different at low and high 

compressions.

FI G. 1. Comparison between room temperature experi-

mental data of ref. [16] and theoretical predictions for the

electronic gap of solid hydrogen in phase I as a function of
compression. We report quasi-particle (circles) and neutral

gap from Q M C (triangles) (red symbols) and from M BPT

(blue symbols, circles G W , triangle BSE) both corrected for
finite size e↵ects. The di↵erence between the quasi-particle

and neutral gap is the exciton binding energy. The solid black

line is a fit to experimental data; the red dashed line to QMC -
Q P gaps.



F I G . 2. Left - 5 G P a. Right - 90 G P a. Comparison of the measured and calculated with BS E I X S spectra for lowest and

highest pressures. Vertical black lines indicate the band gap extracted from the measured spectra by fitting the onset (see other
black lines). The vertical colored lines correspond to the calculated with the BS E neutral gap (we have verified that the poles
of χ and χ̄ are identical) Only converged parts of the BS E spectra are shown.

Inverse dielectric function from BSE calculations: comparison with experiments



F IG . 3. Absorption spectra from BSE (solid) and IPA-G W

(dashed) at ⇢/⇢0 = 8.48 (green) and ⇢/⇢0 = 3.15 (blue) and

experimental spectra at ⇢/⇢0 = 1(black) from [30]. We have

renormalized the spectra to match the experimental intensity.

Absorption profile: GW vs BSE



F IG . 3. Quasiparticle (QP) gap of ideal structure with
P 63/m structure (open circles), Q P gap with classical pro-

tons giving only temperature e↵ects and Q P gap with quan-

tum protons giving quantum and temperature e↵ects. Inset:

The reduction of the quasiparticle gap due to temperature
and quantum nuclear e↵ects (filled circled) and only temper-

ature e↵ects (half-filled circles)

Nuclear thermal and quantum effects on the QP gap



Localization of the excitation for neutral gap calculations

For a single nuclear configuration we show the probability of the excited electron having fixed the position of 

the hole at the center of a molecule and summing over molecular centers.

-
-
-

At the lowest compressions the excitation is almost localized on a single molecule.

At 10 GPa excitation is delocalized over several molecules but still contained within our supercell. 

At 90 GPa excitation dimension is much larger than our supercell and looks delocalized. Here size 

effects are of 1/L similar to the QP gap calculation

F I G . 14. Spatial distribution of the lowest energy exciton wave function integrated over the hole position rh:
R

drh|W0(rh, re)|2,

see Eq. 10, obtained from B S E calculations for one configuration at different compressions: ⇢/⇢0 = 3.15 (left), ⇢/⇢0 = 4.45

(middle) and ⇢/⇢0 = 8.48 (right). The isosurface level is 10%.



Conclusions on energy gaps

• QMC and CEIMC allow to investigate hydrogen in various relevant conditions (in particular metallization 

and molecular dissociation) avoiding the XC approximation of DFT.

• We developed various strategies, all based on QMC, to compute quasi-particle gaps and neutral gaps of 

insulators.

• We understood finite size effects and related them to the spacial extension of the excitation.

• We computed gaps of ideal structures of Carbon and Silicon finding partial agreement with experiments

(but good agreement with previous estimates), but el-phonons and pseudo-potentials effects should be

considered.

• We computed the gaps in high-pressure hydrogen finding excellent agreement with experiments, both in

phase III and in phase I.

• Our study allows to associate unequivocally the edge of IXS signal in Phase I of hydrogen with the neutral

gap, electronic excitation.

• We made predictions for the fluid phase as well (not discussed).

Perspectives

• Multi-determinant methods to investigate excitation localisation and exciton effects: in progress.
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