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Alternative: use correlation factors J(r12) 

TC or VMC ?



VMC: pros and cons

Pros: can handle any WF

⏵ Variational optimization+probablistic approach: 8

Safe measure of the quality of any WF
No need for semi analytical integrals
Handles any forms of correlation factors
Allow to try many forms of compact WF

Cons: statistical noise

⏵ Stochastic optimization of many parameters (> 105): 8

Need to compute many gradients/hessian
Small quantities ѧ need to have small stat. error

Hard to handle lengthy CI/CC expansions

⏵ Core electrons: 8
High-energy regionsѧ large variance of Eloc(r)
Complex parametrization of u(r1, r2) to adapt to the core

Core electrons are often just spectators of chemistry
Often use pseudo potentials (localization approximation)



TC: pros and cons

Pros: deterministic framework
⏵ Non-hermitian → ”Simple” Hamiltonian: 8

”No more” than 3-body integrals
Can rely on ”pure” numerical integrals (R6 ×N2)

Can use any form of correlation factor

⏵ Deterministic calculations: 8

”Standard” second-quantized approaches (CI/CC etc)
Orbital optimization
Can handle very lengthy parametrization (≈108)

Cons: non variational8

⏵ Hard to know the ”true” quality of WF
⏵ Hard to optimize the correlation factor
⏵ Core electrons:

No clear core-valence splitting in real-space
High-density regions are very sensitive
Can cause ”catastrophic” breakdown
Need for complex u(r1, r2) in the core regions



The aim of this talk: best of both world ?

Deterministic optimization of the Slater part

⏵ TC Selected CI

multi-configurational wave function
coupling with dominant weak-correlation effects

⏵ Bi-orthonormal orbital framework

Optimize both left- and right-eigenvectors
Improves the SCI+PT2 convergence
Enables frozen-core calculations

Variational Monte Carlo for Jastrow

⏵ Safely optimize correlation factors
⏵ Few parameters Jastrow
⏵ Transferable from atoms to molecules
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Φ is the right-eigenvector of e−JHeJ

No overlap matrix anymore !

ETC is not necessarily variational ... 8
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Application to VMC: optimizing lengthy CI expansion

Consider the Ψ = eJΦ = eJ ∑ i ciφi

The correlation factor J is fixed

Goal: re-optimize lengthy CI expansions (≈ 105) for J

Use TC to optimise Φ

(H + ∆̂ u)Φ = EΦ

We chosed a generic one- and two-body correlation factor 

Technicalities: iterative hermitian dressing

⏵ Dressing inspired from MRCC work (JCP, 2016)
⏵ HΦ computed analytically (usual CI vector)
⏵ Sampling of a single vector ∆̂ uΦ = in VMC

⏵ ∆̂ uΦ: small fluctuations
⏵ Zero variance with analytical integrals of simple U

⏵ Strong reduction of variance
⏵ Could be done purely deterministically and linearly



Application to VMC: optimizing lengthy CI expansion
TC can indeed lower the VMC Energy !
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How to choose the Jastrow factor ?

Two kinds of u(ri, rj) ?

Universal correlation factors: u(ri, rj) = u(r12)

⏵ ”cheap” integrals
⏵ same correlation hole everywhere
⏵ Easy parametrization (Univeral)

”3-body” Jastrow: electron-nucleus dependency
u(ri, rj ) = u(r12, r1A, r2A)

⏵ usually non analytical integrals: R6 × (NAO )2 integrals

⏵ Flexible correlation hole
⏵ Lots of parameters, not easy optimization
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µ: depth/range of u(r12)

Valence µ = 0.87 ?

⏵ ETC « E0

⏵ Not adapted to core

System dependent µ ?

⏵ Based on RS-DFT
⏵ Averaged over n(r)
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Convergence of regular SCI: extrapolation technique
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Convergence of TC-SCI
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Convergence of TC-SCI: extrapolation breaks down
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Deeper analysis: convergence of PT2
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Criticism of a system-dependent µ (JCP, 2021, JCP, 2022)

Fast convergence cand be fortuite ... 8

Unable to extrapolate ... 8

Positive correlation energy !

⏵ Positive contributions come from the core !
⏵ Correlation hole too big for core electrons
⏵ µ must increase in core regions

Average µ: Size-consistency ?

⏵ Dissociation of A⋯B molecule
⏵ µ ≈ (µA + µB )/2

⏵ E ≠ EA + EB !

Potential solution:

⏵ Fixed valence µ = 0.87 (based on FROGG of Ten No)

⏵ Remove core electrons from Jastrow !



A potential solution: cheap 3-body Jastrow (JCTC, 2023)

Valence µ: µ = 0.87 ≈ FROGG

Multiply u(µ, r12) by an atom-centered gaussian envelope

A
1 2 12 A 1 A

2

A

u(r , r ) = u(µ, r ) ( 1− Σ exp(α (r −R )) )(1 exp A 2 A
2− Σ (α (r −R )) )

Kills the correlation factor when r → RA

Integrals can be computed analytically 

Optimize the α parameter in VMC

Obtain atomic parameters: is it transferables to molecules ? 

Use a single Slater determinant anzats eUΦ
⏵ How to optimize the orbitals of Φ ?
⏵ TC in a bi orthonormal framework !
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General case of ĤΦ = EΦ projected on BL and BR

i
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General case of ĤΦ = EΦ projected on BL and BR

i

rĤ|Φ⟩ = EŜ |Φ⟩, with |Φ⟩ = Σ c |i iφ ⟩ and Hij = (χ i |Ĥ|φj⟩, Sij = (χ i |φj⟩
i iGeneral case: no need for χ = φ !

Only constraint: Ŝ−1 must be defined
If (χ i |φj⟩ = δij then it is a bi-orthonormal basis

kNew creation/annihilation operators ĉ /b̂l

k l̂ kl(ĉ ,b } = δ , (
k l

ĉ , ĉ } = 0, (b̂k , b̂l} = 0.

Change the integrals according to

klO = ( ˆ
ij k l i jχ χ |O|φ φ ⟩

Left/right Slater determinants are different in real-space

X I (r1, r2,⋯, rN) ≠ ΦI (r1, r2, ⋯, rN)

But bi-orthogonality relation (as for orthonormal basis)

(X I |ΦJ⟩ = δIJ
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Using VMC to optimize the Jastrow (JCTC, 2023)

HF+J:eJ(α)|HF⟩
TC+J:eJ(α)|Φ[α]⟩ TC-SCF orbs. improves VMC energy ! 

Change the optimal parameters for u(r1, r2)

Copper,cc-pVTZ: VMC energies
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Transferable from atoms to molecules
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Numerical example: CO, cc-pVTZ, frozen core
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Numerical example: CO, cc-pVTZ, frozen core
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Numerical example: CO, cc-pVTZ, frozen core
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Numerical example: Atomization energies, cc-pVTZ
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Frozen core TC ?

Difference between the all-electron and frozen core energy differences 

(mH)

SCI TC-SCI
RHF orbs TC-SCF orbs

IP of F -0.2 -2.2 -0.1

IP of Ne -0.3 -3.2 -0.2

AE of F2 -0.4 -2.3 -0.2

Significative error on ∆E with RHF orbs 

Better core-valence splitting with TC-SCF orbs 

Make frozen core calculations possible

Open to CASSCF calculations



How to go towards larger systems ? 3-e terms

ijmLkln tensor: N6 to store !

Makes (XJ|H̃|ΦI⟩ much more complex

Approximation: normal-ordering

⏵ Contract the 3-e op. on a reference |Φ⟩
⏵ Yield effective 0, 1, 2, and 3-e operator
⏵ Discard the 3-e operator
⏵ General formulation by Kutzelnigg/Mukherjee
⏵ Intense use in nuclear physics
⏵ Used also in TC (Alavi et. al.)
⏵ We extended it to a bi-orthonormal framework

C6H6 frozen core atomization energy (Hartree):

CCSD(T) CCSD(T)-F12 TC-SCI

VDZ 2.0222 2.1526 2.1558

VTZ 2.1229 2.1660 -



Conclusion

Determinisitc TC can be used to optimize Φ
VMC can be used to optimize eU

Bi-orthonormal for TC has many advantages

⏵ Optimize both left- and right-eigenvectors
⏵ Allow for frozen core approximations
⏵ Normal ordering of the 3-e terms

Simple 3-body Jastrow

⏵ Parametrized only for atoms
⏵ No need to reoptimize !
⏵ Size-consistent

On going work

⏵ Compare TC with QMC orbital optimization
⏵ Implementation of TC-BiO-CASSCF
⏵ Improve the correlation factor (1-e term)
⏵ Investigate µ(r)



Advertisement zone

TC has been implemented in

⏵ Quantum Package (V3 coming soon !)
⏵ QMCKL was used for Jastrow factors

QMC calculations

⏵ QMC=Chem
⏵ Thanks to TREXIO interface

post-doc/PhD position available in Paris ! 8
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Main differences between F12 and (QMC, TC)

F12: projects out eJ(r12) from B

⏵ eJ(r12) only takes ”what is missing” from B
⏵ F12 does not ”compact” the wave function within B

⏵ Hard to formalize in a general MC context

QMC and TC: full effect of eJ(r12) then project on B

⏵ Wave function can be compacted within B

⏵ QMC: Expect. Value (ΦB|e+J(r12)He+J(r12)|ΦB⟩
Hermitian
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⏵ TC: Similarity transformation e−J(r12)He+J(r12)

Non Hermitian
Non Variational



Some technicalities about integrals

Integrals can be computed as

ij JK = dr φ (1 k 1 i 1
kl 1

jlr )φ (r )(g ( 1
2
jlr ) + g ( 1

klnL = dr φ ( 1 1
ijm J 1 k 1 i 1 jl 1 mnr )φ (r )g (r )g ( 1

r )) numerical grid on R3

r ) numerical grid on R3

1
jlg ( 1 Jr ) = dr2∇1u(r1, r2)φl (r2)φj (r2) numerical or analytical

2
jlg ( 1 Jr ) = dr2|∇1u(r1, r2)|2φl (r2)φj (r2) numerical or analytical

If simple enough u( 1 2
1
jlr , r ) then g ( 1

2
jlr ) and g ( 1r ) are analytical

Storage of intermediate ∝ N2 × Ng

ijm
kln 6Storage of L ∝ N → Normal ordering approximations for L kln

ijm

(Nuclear physics, CC community)
⏵ Contract Lkln with HF one-, two- and three-rdmijm

⏵ End up with effective zero, one-, two- and three-operators
⏵ discard the three-body



Numerical example: CO, cc-pVTZ, frozen core
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Graphical example
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What is the shape of scalar e-e potential with µ
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Adapting SCI to TC: PT for non hermitian

Split the Hamiltonian in H̃ = H0 + ʄV

0H0|Φ0⟩ = E(0)|Φ(0)⟩, H |
(0)

I



Main results

For the wave function at first-order
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Taylor expansion in terms of left-function

Here Φ is kept fixed
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