

The key role of quantum electron and ion fluctuations on the hydrogen phase diagram

Lorenzo Monacelli

Crafting metallic hydrogen

- Molecular hydrogen dissociates to an atomic phase at high ${\cal P}$
- BCS predicts it to be a room-temperature superconductor

Crafting metallic hydrogen

- Molecular hydrogen dissociates to an atomic phase at high ${\cal P}$
- BCS predicts it to be a room-temperature superconductor

Notable mention:

- H_3S is superconductor at 200 K
- LaH $_{10}$ is superconductor at 250 K

The phase diagram of hydrogen

Challenges

Experiments

- X Neutron scattering
- X X-Ray scattering
- Electrical resistivity
- Optical spectroscopy
- Vibrational spectroscopy

Simulations

- Required accuracy of 1 meV/H
 X DFT
 - Diffusion Monte Carlo
- Quantum fluctuations of protons
 - **X** Classical simulations
 - Quantum nuclear motion

Many possible phases

with strong nuclear quantum fluctuations

Theoretical framework

- Simulation of *electrons* and *nuclei* from first principles
- Adiabatic approximation: *electrons* are in their ground state
- The electronic problem is solved using Quantum Monte Carlo as implemented in the TurboRVB code

- Energies are evaluated with a Δ sampling with DFT-BLYP

Theoretical framework

We evaluate energies DFT-BLYP and correct them based on the density and phase with DMC energies

L Monacelli et al., Nature Physics, 19, 845 (2023)

Theoretical framework

- Nuclear wave-function is solved with a Variational Monte Carlo
- The nuclear trial density matrix $\hat{
 ho}$ is a Gaussian

$$\langle R|\hat
ho|R
angle \propto \exp\left[-rac{1}{2}\sum_{ab}(R_a-{\cal R}_a) \Phi_{ab}(R_b-{\cal R}_b)
ight]$$

- We optimize the centroids ${\mathcal R}$ and fluctuations Φ
- Minimization of the free energy with a trial nuclear density matrix $\hat{
 ho}$

$$\min_{\hat{
ho}} F[\hat{
ho}] = iggl(\hat{H} iggr) + \underbrace{k_b T iggl(\ln \hat{
ho} iggr)}_{-TS}$$

- Given F we can simulate the thermodynamics of the system.
- Implemented in the SSCHA code (www.sscha.eu)

<u>L. Monacelli</u> et al., Physical Review B, 98, 024106 (2018) <u>L. Monacelli</u> et al., Journal of Physics: Condensed Matter, 33, 363001 (2021)

Self-Consistent Harmonic Approximation

Self-Consistent Harmonic Approximation

Experimental hydrogen phase diagram

M. I. Eremets *et al.*, *Nature Physics*, 15, 1246 (2019) P. Loubeyre *et al.*, *Nature*, 577, 631 (2020)

Discovery of phase VI

enthalpy with quantum fluctuations

L. Monacelli et al., Nature Physics, 19, 845 (2023)

Metallization: theory vs. experiments

- Simulation of phase III bandgap
- Account for
 - Discontinuity in the XC functional
 - Electron-phonon interaction
- Conductivity onset is due to the closure of the bandgap

[1] <u>L. Monacelli</u> *et al.*, *Nature Physics*, 16, 73 (2021) [2] M. I. Eremets *et al.*, *Nature Physics*, 15, 1246 (2019)

Metallization: theory vs. experiments

- Simulation of phase III absoprtion
- Account for
 - Discontinuity in the XC functional
 - Electron-phonon interaction
- Good agreement below 410 GPa
- Between 360 GPa and 410 GPa phase III is a **transparent metal**
 - Like ITO employed in LED displays
 - Due to the small plasma frequency

[1] <u>L. Monacelli</u> et al., Nature Physics, 16, 73 (2021)
[3] P. Loybeyre et al., Nature, 577, 631 (2020)
[4] <u>L. Monacelli</u> et al., Nature Physics, 19, 845 (2023)

Metallization: theory vs. experiments

- Simulation of phase III absoprtion
- Account for
 - Discontinuity in the XC functional
 - Electron-phonon interaction
- Good agreement below 410 GPa
- Between 360 GPa and 410 GPa phase III is a transparent metal
- Phase VI is opaque above 355 GPa

[4] L. Monacelli et al., Nature Physics, 19, 845 (2023)

Experiments confirm our predictions

P. Loubeyre *et al.*, *Physical Review Letters*, 129, 035501 (2022) - presented for the first time in May 2022. <u>L. Monacelli</u> *et al.*, *Nature Physics*, 19, 845 (2023) - preprint in January 2022.

How does it look under visible light?

Conclusions

State-of-the-art theoretical simulations are predictive

Diffusion Monte Carlo

Focus on the electronic structure.

sissaschool.github.io/turborvb_website/

Stochastic Self-Consistent Harmonic Approximation

For nuclear quantum and anharmonic effects on nuclear motion

www.sscha.eu