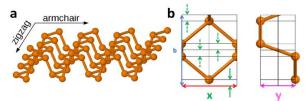
Colossal band gap response of single-layer phosphorene to strain predicted by Quantum Monte Carlo

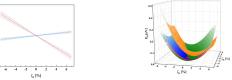


Y. Huang, M. Manzoor, J. Brndiar, L. Mitas, I. Stich Institute of Informatics, Slovak Academy of Scicences

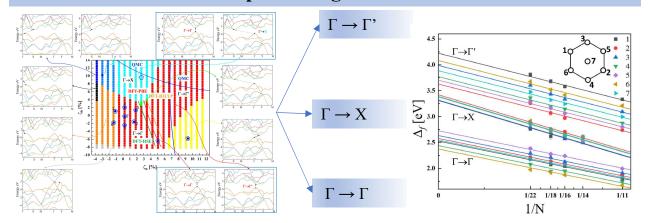
1.Introduction

Two-dimensional (2D) materials have the potential to revolutionize technology. However, the band gaps of 2D materials under strain still cannot be predicted accurately.

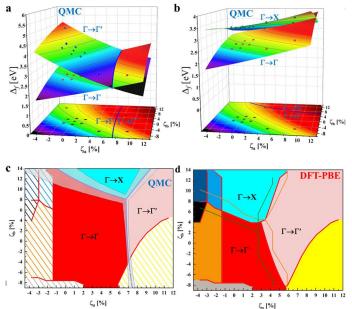
By using ultra-accurate quantum Monte Carlo methods, we predict that single-layer phosphorene is not only exhibits a band gap straining rate 0.1 eV% but it keeps the direct $\Gamma \rightarrow \Gamma$ transition over a very large window of applied strains.



2. Optimization of Structure


Four dimensional paraboloid approximation is applied to fit potential energy surface and get minima.

	A.		(A) (A)			
parameter	QMC 11-cell	QMC 16-cell	QMC 22-cell	QMC 32-cell	DFT-PBE	3D-BP
	ground state					
a	$6.229 {\pm} 0.008$	$6.238 {\pm} 0.002$	$6.230 {\pm} 0.002$	$6.236 {\pm} 0.003$	6.235	6.2618
b	$8.651 {\pm} 0.017$	8.688 ± 0.008	8.707 ± 0.006	$8.704 {\pm} 0.011$	8.711	8.2700
x	0.748 ± 0.005	0.759 ± 0.002	0.765 ± 0.001	NA	0.770	0.6367
y	$3.987 {\pm} 0.007$	3.978 ± 0.003	$3.985 {\pm} 0.002$	NA	3.975	4.0280
E_0^s	-716.563 ± 0.002	-716.498 ± 0.0008	-716.469 ± 0.0007	-716.453 ± 0.001	-717.711	NA
	excited state					
a	6.227 ± 0.027	6.222 ± 0.003	6.224 ± 0.003	6.235 ± 0.003	6.222	NA
b	8.515 ± 0.178	8.607 ± 0.012	8.664 ± 0.010	8.640 ± 0.014	8.543	NA
x	$0.728 {\pm} 0.044$	0.747 ± 0.003	$0.761 {\pm} 0.002$	NA	0.739	NA
y	$4.053 {\pm} 0.018$	4.031 ± 0.002	$4.020 {\pm} 0.002$	NA	4.051	NA
E_1^s	-716.415 ± 0.005	-716.375 ± 0.0007	$-716.375 {\pm} 0.001$	$-716.378 {\pm} 0.001$	-717.643	NA


Negative Poisson ratio Deformation energy

3.Outline of DFT phase diagram and finite size effect

4. Conclusions

1. The $\Gamma \rightarrow \Gamma$ QMC band gap may have a significantly wider window.

2. For our QMC optimized structure at equilibrium we obtain $a = 3.30 \pm 0.003$ Å, $b = 4.61 \pm 0.006$ Å $\Delta_f = 2.53 \pm 0.020$ eV (experiment 2.46 eV)

3. The band gap tuning rates is 0.1 eV/% strain. The direct band gap at Γ is in the range of 2.1 - 3.8 eV.