

TREX e-School on Quantum Monte Carlo with TurboRVB

Diffusion Monte Carlo

Michele Casula Sorbonne Université, Paris, France

Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union Horizoon 2020 research and innovation programme under Grant Agreement **No. 952165.**

- × Diffusion Monte Carlo
- ×Power method
- ×Lattice-regularized diffusion Monte Carlo

- ×Looking for the **ground state** of a Hamiltonian H
 - by minimizing the variational energy of a trial state
 - $E_{GS} = \min_{\Psi} \langle \Psi | H | \Psi \rangle$ with Ψ belonging to the Hilbert space
- ×Variational freedom in choosing $\,\Psi$ (in general a
 - complex many-body state)
- ×Variational principle:

$$\forall \Psi, E = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} \ge E_{GS}$$

Optimization of the parameters in the variational form of the wave function (it requires the computation of forces and the minimization of a noisy functional)

many body forces:

$$\frac{\P E}{\P c_i} = \frac{\P}{\P c_i} \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

QMC molecular dynamics possible!

Stochastic projection of the initial trial state which follows the imaginary time dynamics

$$(H - E_T)G(\mathbf{R}, \mathbf{R}_0, t) = -\frac{\#G(\mathbf{R}, \mathbf{R}_0, t)}{\#t}$$

iterative application of the Green's function equation:

 $\Psi^{(n)}(\mathbf{R}',t+\tau) = \mathbf{O} \mathbf{R} \mathbf{G}(\mathbf{R}',\mathbf{R},\tau) \Psi^{(n-1)}(\mathbf{R},t)$

Construct an operator which inverts spectrum of H Use it to stochastically project the ground state of H

- Diffusion Monte Carlo (DMC) $\exp\{-\tau(H-E_T)\}$
- Power method

$$\Lambda - H$$

Diffusion Monte Carlo projection

$$\Psi^{(n)} = \mathbf{e}^{-n\tau(H-E_{\tau})}\Psi^{(0)} = \mathbf{a} \Psi_{i} \langle \Psi^{(0)} | \Psi_{i} \rangle \mathbf{e}^{-n\tau(E_{i}-E_{\tau})}$$

In the limit of large projection time, the initial state is projected to the ground state, provided the initial guess is non orthogonal

$$\lim_{n \to \infty} \Psi^{(n)} = \Psi_0 \left\langle \Psi^{(0)} \middle| \Psi_0 \right\rangle e^{-n\tau(E_0 - E_T)} \propto \Psi_0$$

Rewrite the projection equation in an integral form:

$$\Psi^{(n)}(\mathbf{R}', t + \tau) = \mathbf{O} \mathbf{R} \, G(\mathbf{R}', \mathbf{R}, \tau) \Psi^{(n-1)}(\mathbf{R}, t)$$
$$G(\mathbf{R}', \mathbf{R}, \tau) = \langle \mathbf{R}' | e^{-\tau(H - E_{\tau})} | \mathbf{R} \rangle$$

where G is the Green's function, solution of the imaginary time Schrödinger equation:

$$(H - E_T)G(\mathbf{R}, \mathbf{R}_0, t) = -\frac{\P G(\mathbf{R}, \mathbf{R}_0, t)}{\P t}$$

with the initial condition $G(\mathbf{R}',\mathbf{R},0) = \delta(\mathbf{R}'-\mathbf{R})$

Can we interpret G as a transition probability? If yes, we can solve the projection equation stochastically.

• H=K (V=0)
$$-\frac{1}{2}\nabla^2 G(\mathbf{R},\mathbf{R}_0,t) = -\frac{\partial G(\mathbf{R},\mathbf{R}_0,t)}{\partial t}$$

The Green's function is given by a Gaussian

$$G(\mathbf{R}',\mathbf{R},\tau) = (2\pi \tau)^{-3N/2} \exp \frac{\acute{\mathbf{e}}}{\acute{\mathbf{e}}} \frac{(\mathbf{R}'-\mathbf{R})^2 \grave{\mathbf{L}}}{2\tau} \overleftarrow{\mathbf{L}}$$
 Diffusion process!

• *H=V* (*K=0*)
$$(V(\mathbf{R}) - E_T)G(\mathbf{R}, \mathbf{R}_0, t) = -\frac{\#G(\mathbf{R}, \mathbf{R}_0, t)}{\#t}$$

The Green's function is given by an exponential

$$G(\mathbf{R}',\mathbf{R},\tau) = \exp\left[-\tau(\mathbf{V}(\mathbf{R}) - \mathbf{E}_{\tau})\right]\delta(\mathbf{R}' - \mathbf{R})$$

Weighting factor!

$$\mathbf{e}^{-\tau(K+V)} = \mathbf{e}^{-\tau K} \mathbf{e}^{-\tau V} + \mathbf{O}(\tau^2)$$

Short time approximation valid up to the second order in time step, merging the diffusion and weighting process

$$G(\mathbf{R}',\mathbf{R},\tau) = (2\pi \tau)^{-3N/2} \exp \frac{\acute{\mathbf{e}}}{\acute{\mathbf{e}}} \frac{(\mathbf{R}'-\mathbf{R})^2 \grave{\mathbf{u}}}{2\tau} \operatorname{i} \exp \left[-\tau(\mathbf{V}(\mathbf{R})-E_{\tau})\right]$$

DMC results must be extrapolated in the limit of zero time step

Problem with the above Green's function: *V(R)* diverges when two electrons get close, explosion of the weights, <u>algorithm unstable</u>

Start from the integral equation:

$$\Psi^{(n)}(\mathbf{R}',t+\tau) = \mathbf{O} \mathbf{R} \, G(\mathbf{R}',\mathbf{R},\tau) \Psi^{(n-1)}(\mathbf{R},t)$$

Multiply each side by the trial wave function $\Psi_T(\mathbf{R})$ and define $f^{(n)}(\mathbf{R},t) = \Psi^{(n)}(\mathbf{R},t)\Psi_T(\mathbf{R})$

$$f^{(n)}(\mathbf{R}',t+\tau) = \mathbf{O} \mathcal{A} \mathbf{R} \, \tilde{\mathcal{G}}(\mathbf{R}',\mathbf{R},\tau) \, f^{(n-1)}(\mathbf{R},t)$$

where the importance sampled Green's function is

$$\tilde{G}(\mathbf{R}',\mathbf{R},\tau) = \frac{\Psi_{T}(\mathbf{R}')}{\Psi_{T}(\mathbf{R})} \langle \mathbf{R}' | e^{-\tau(H-E_{T})} | \mathbf{R} \rangle$$

and in the large projection time limit we sample the mixed distribution

$$\lim_{n \to \infty} f^{(n)} = \Psi_0 \Psi_T$$

$$G(\mathbf{R}',\mathbf{R},\tau) = (2\pi\tau)^{-3N/2} \exp \frac{\hat{\mathbf{e}}}{\hat{\mathbf{e}}} \frac{(\mathbf{R}'-\mathbf{R}-\tau \mathbf{V}(\mathbf{R}))^2 \hat{\mathbf{u}}}{2\tau} \operatorname{dexp}\left[-\tau (E_L(\mathbf{R})-E_T)\right]$$

Two important new features

Drift velocity
$$V(\mathbf{R}) = \frac{\nabla \Psi_T(\mathbf{R})}{\Psi_T(\mathbf{R})}$$

Pushes the walkers away from the nodes, by enforcing the importance sampling according to the trial wave function

Weighting factor with the local energy
$$E_L(\mathbf{R}) = \frac{H\Psi_T(\mathbf{R})}{\Psi_T(\mathbf{R})}$$

The divergencies of the bare potential are cured by the fulfillment of the cusp conditions. The algorithm is now stable at least for **bosons**.

For **fermions**, the mixed distribution $\Psi_0 \Psi_7$ will not be positive definite: the nodes of the ground state can be different from the nodes of the trial wave function.

Nodes: 3N-1 surfaces with **R** s.t. $\Psi(\mathbf{R}) = 0$

Fixed node approximation: constrain the projected state to have the same nodes as the trial wave function

 $\Psi_0(\mathbf{R})\Psi_{\mathcal{T}}(\mathbf{R}) \, \mathbf{^3} \, \mathbf{0} \qquad \forall \mathbf{R}$

the mixed distribution can be interpreted as a probability distribution.

Solve the <u>Schrödinger equation with different boundaries conditions</u>, set by the nodes of the initial trial wavefunction.

- If the nodes are exact, no approximation
- The fixed node approximation gives an upper bound of the true ground state energy

E_L and **V** still diverge at the nodes of the trial wavefunction! **Regularization:**

$$\mathbf{V} = (\mathbf{v}_1, \dots, \mathbf{v}_N) \longrightarrow \mathbf{\bar{V}} = (\mathbf{\bar{v}}_1, \dots, \mathbf{\bar{v}}_N)$$

Velocity

$$\bar{\mathbf{v}}_{i} = \frac{-1 + \sqrt{1 + 2av_{i}^{2}\tau}}{av_{i}^{2}\tau} \mathbf{v}_{i}; \quad \mathbf{v}_{i} = \nabla_{i} \log |\psi_{G}(\mathbf{R})|$$

Branching factor

$$\bar{S}(\mathbf{R}) = [E_T - E_{\text{best}}] + [E_{\text{best}} - E_L(\mathbf{R})]\frac{\bar{V}}{V}$$

Global cutoff \rightarrow we lost the size-consistency

$$\bar{S}(\mathbf{R}) = E_T - \bar{E}_L(\mathbf{R});$$

$$\bar{E}_L(\mathbf{R}) = E_{\text{best}} + \text{sign}[E_L(\mathbf{R}) - E_{\text{best}}]$$

$$\times \min\{E_{\text{cut}}, |E_L(\mathbf{R}) - E_{\text{best}}|\}$$

$$E_{\rm cut} = \alpha \sqrt{N/\tau}$$

Andrea Zen, Sandro Sorella, Michael J. Gillan, Angelos Michaelides, and Dario Alfè, Physical Review B **93**, 241118(R) (2016)

$w_M = \prod_{j=1}^M \exp[-\tau (E_L(\mathbf{R}_j) - E_T)]$

large fluctuation for the weight (product of M random variables)

Solution: multi-walkers (N_w) algorithm! Variance reduced by a factor N_w

Branching step

Reconfiguration of the walkers before the variance becomes too large: Choose new configurations among the old ones with a probability

$$p_i = \frac{w_i}{\sum_j w_j}$$

 N_w correlated random numbers: $z_{\alpha} = (\alpha + \chi - 1)/N_w$ with $\alpha = 1, \dots, N_w$ χ homogeneously distributed in [0, 1]

Count how many z_{α} fall into a p_i interval

- 1. Sample initial walkers from $|\Psi_{\tau}(\mathbf{R})|^2$
- 2. Propose a new move from the distribution $T(\mathbf{R}',\mathbf{R},\tau) = \exp \left[\frac{1}{2} \frac{(\mathbf{R}'-\mathbf{R}-\tau \mathbf{V}(\mathbf{R}))^2 \ddot{\mathbf{u}}}{2\tau} \right] \dot{\mathbf{p}}$ **Drift and diffusion** $\mathbf{R}' = \mathbf{R} + \xi + \tau \mathbf{V}(\mathbf{R})$ with ξ sampled from $g(\xi) = (2\pi \tau)^{-3N/2} \exp(-\xi^2/2\tau)$

Fixed node approximation: reject the move if $sign(\Psi_T(\mathbf{R}'))^1 sign(\Psi_T(\mathbf{R}))$

Rejection scheme, accept the new move with probability $p = \min_{i=1}^{\frac{1}{2}} 1, \frac{|\Psi_{\tau}(\mathbf{R}')|^2 T(\mathbf{R},\mathbf{R}',\tau)}{|\Psi_{\tau}(\mathbf{R})|^2 T(\mathbf{R}',\mathbf{R},\tau)} \dot{\mathbf{y}}$

- 3. Branching step according to the weighting factor
- 4. Iterate 2. And 3. over walkers and for many generations in order to accumulate statistics.

<u>VMC distribution function is given</u> $\Pi(\mathbf{R}) = \frac{|\Psi(\mathbf{R})|^2}{\mathbf{\dot{O}} d\mathbf{R} |\Psi(\mathbf{R})|^2}$

Construct *M* which satisfies stationarity condition $M \Pi(\mathbf{R}) = \Pi(\mathbf{R})$

 Π is eigenvector of M with eigenvalue 1 Π is the dominant eigenvector

DMC different procedure!

The matrix *M* is given

$$\frac{\Psi_{\mathcal{T}}(\mathbf{R}')}{\Psi_{\mathcal{T}}(\mathbf{R})} \big\langle \mathbf{R}' \big| e^{-\tau(H-E_{\mathcal{T}})} \big| \mathbf{R} \big\rangle$$

We want to find the dominant eigenvector $\Pi = \Psi_0 \Psi_7$

Construct an operator which inverts spectrum of H Use it to stochastically project the ground state of H

• Diffusion Monte Carlo (DMC) $\exp\{-\tau(H-E_T)\}$

Power method

$$\Lambda - H$$

Power method projection

$$\lim_{n \to \infty} (\Lambda - H)^n |\Psi^{(0)}\rangle \propto |\Psi_0\rangle$$

In the limit of large powers, the initial state is projected to the ground state, provided the initial guess is non orthogonal

$$(\Lambda - H)^{n} |\Psi^{(0)}\rangle = \sum_{i} a_{i} (\Lambda - E_{i})^{n} |\Psi_{i}\rangle$$
$$(\Lambda - E_{0})^{n} \left[a_{0} |\Psi_{0}\rangle + \sum_{i \neq 0} a_{i} \left(\frac{\Lambda - E_{i}}{\Lambda - E_{0}}\right)^{n} |\Psi_{i}\rangle \right]$$

If λ such that $\max_{i} |\Lambda - E_i| = |\Lambda - E_0|$ verified by $\lambda > (E_{max} + E_0)/2$

$$\lim_{n \to \infty} (\Lambda - H)^n |\Psi^{(0)}\rangle \propto |\Psi_0\rangle$$

$$H = -t \sum_{i,a} (c_{i+a}^{\dagger} c_i + h.c.) + \frac{1}{2} \sum_{i,j} V_{ij} n_i n_j$$

$$G_{x,x'} = (\Lambda \delta_{x,x'} - H_{x,x'}) \frac{\Psi_G(x')}{\Psi_G(x)}$$

$$\Rightarrow$$
 importance sampling

Hopping:

transition probability

$$p_{x,x'} = \frac{G_{x,x'}}{\sum_{x'} G_{x,x'}} = \frac{G_{x,x'}}{\Lambda - e_L(x)}$$

weight $w^{i+1} = w^i (\Lambda - e_L(x))$

For **fermions**, **lattice fixed node approximation** to have a well defined transition probability

$$G_{xy} = \Lambda \delta_{xy} - H_{xy} \Psi_G(x) / \Psi_G(y)$$
 Green function

 $\hat{H}_{xy}^{eff} = \hat{H}_{xy} \text{ if } G_{xy} > 0 \quad \text{OFF DIAGONAL TERMS}$ $\hat{H}_{xy}^{eff} = 0 \quad \text{otherwise}$ $\hat{H}_{xx}^{eff} = V(x) + v_{sf}(x) \quad \text{DIAGONAL TERM}$ $v_{sf}(x) = -\sum_{y} G_{xy} \text{ with } G_{xy} < 0 \text{ SIGN FLIP TERM}$

Hopping with sign change replaced by a positive diagonal potential

LATTICE UPPER BOUND THEOREM !

D.F.B. ten Haaf et al. PRB 51, 13039 (1995)

$$\left\langle \Psi_{0}^{eff} \left| H \right| \Psi_{0}^{eff} \right\rangle \leq \left\langle \Psi_{0}^{eff} \left| H^{eff} \right| \Psi_{0}^{eff} \right\rangle \quad \Psi_{0}^{eff} \text{ GS of } H^{eff}$$

 $\operatorname{Limit} \Lambda \to \infty$

On the continuum, usually H not bounded from above!

$$G_{x,x} = \Lambda - H_{x,x} \ge 0 \implies \Lambda \to \infty$$

$$G \approx \Lambda \exp(-\delta \tau H) \qquad \delta \tau = \frac{1}{\Lambda}$$
Probability of leaving x
$$q = \frac{\sum_{x'(\neq x)} G_{x',x}}{\Lambda - E_L(x)} \approx \delta \tau \sum_{x'(\neq x)} G_{x',x}$$
Probability of leaving x after k time slices
$$f(k) = q (1-q)^{k-1}$$

$$\tau_x = k \ \delta \tau \quad k \text{ distributed according to } f$$

$$\tau_x = \frac{-\log(r)}{\sum_{x'(\neq x)} G_{x',x}} \quad r \in]0,1] \text{ random}$$

✓ No instabilities in the effective fixed-node Hamiltonian

(no nodal divergencies)

✓ No time step error

(exact continuous-time limit formulation)

✓ Possibility of including non-local potentials

For heavy atoms pseudopotentials are necessary to reduce the computational time $V_P(x_i) = \sum v_l(x_i)$ $|lm\rangle\langle lm|$ Usually they are non local In QMC angular momentum projection is calculated by using a quadrature rule for the integration S. Fahy, X. W. Wang and Steven G. Louie, PRB 42, 3503 (1990) Natural discretization of the projection Can a lattice scheme be applied?

Kinetic term: discretization of the Laplacian

One dimension:

$$\frac{d^2}{dx^2}f(x) = \frac{f(x+a) + f(x-a) - 2f(x)}{a^2} + O(a^2)$$

General case:

$$\Delta \to \Delta_a = \sum_{i=1}^d \frac{T_{a_i} + T_{-a_i} - 2I}{a_i^2} + O(a^2)$$

where

$$T_{\hat{a}}\Psi_{T}(\overline{x}) = \Psi_{T}(\overline{x} + \hat{a})$$

hopping term t \rightarrow 1/a²

Possible choice: double mesh for the discretized Laplacian

$\Delta \Psi(x) \approx p \Delta_a \Psi(x) + (1-p) \Delta_b \Psi(x) + O(a^2)$

If *a* and *b* are incommensurate, the random walk can sample all the space!

$$b/a = \sqrt{Z^2 + 1}$$

Example: 1D system

electrons: 1 up, 1 down, PBC

$$a = 0.25 r_s \qquad b = 2a$$

 $a = 0.25 r_s$ $b = \sqrt{5}a$

Example: 1D system

electrons: 1 up, 1 down, PBC

$$a = 0.25 r_s \qquad b = 2a$$

 $a = 0.25 r_s$ $b = \sqrt{5}a$

Double mesh optimized

5

Definition of lattice regularized Hamiltonian

 $H_a = \Delta_a + V_a$

- > Continuous limit: for $a \rightarrow 0$, $H_a \rightarrow H$
- \succ Local energy of H_a = local energy of H

$$e_{L}(x) = \sum_{x'} G_{x,x'} = \frac{H\Psi_{G}(x)}{\Psi_{G}(x)} = E_{L}(x)$$

$$V(x) \rightarrow V^{a}(x) = V(x) + \left(\frac{\Delta_{a}\Psi_{G}(x)}{\Psi_{G}(x)} - \frac{\Delta\Psi_{G}(x)}{\Psi_{G}(x)}\right)$$

Faster convergence in a!

Near the nodes **and** near the nuclei, the modified potential V^a can **diverge negatively**

$$v_{el-ion}(\mathbf{r}_i) \longrightarrow v_i^a(\mathbf{R})$$

$$v_i^a(\mathbf{R}) = v_{el-ion}^a(\mathbf{r}_i) + \frac{(\nabla_{i,a}^2 - \nabla_i^2)\Psi_G(\mathbf{R})}{2\Psi_G(\mathbf{R})}$$

far from the nodes

 $v^a_i(\mathbf{R}) = v^a_{el-ion}(\mathbf{r}_i)$ close to the nodes

where
$$v_{el-ion}^{a}(\mathbf{r}_{i}) = -\sum_{I=ions} \frac{Z_{I}}{Max[|\mathbf{r}_{i} - \mathbf{R}_{I}|, a]}$$

Generations loop

extrapolation properties

DMC	LRDMC
Trotter approximation	For each <i>a</i> well defined effective H
τ extrapolation	<i>a</i> extrapolation
τ^2 behaviour	<i>a</i> ⁴ behaviour

 $\sqrt{\tau} = a$ \implies same diffusion constant

CPU time
$$\propto \tau^{-1}(a^{-2})$$

Convergence example

1 DEG: r_s=1

Off diagonal matrix elements

$$G_{xy} = \Lambda \delta_{xy} - H_{xy} \Psi_G(x) / \Psi_G(y)$$
 propagator

From the discretized Laplacian:

$$G_{xy} = \frac{p}{a^2} \frac{\Psi_G(\bar{x})}{\Psi_G(\bar{y})} \qquad \qquad \overline{x} = \overline{y} \pm \overline{a} \qquad \qquad \text{a: translational vectors}$$

From the non local pseudopotential:

$$G_{xy} = -\left(\sum_{l} \frac{2l+1}{4\pi} \mathbf{v}_{l}(\overline{y}) P_{l}\left[\cos \theta_{xy}\right]\right) \frac{\Psi_{G}(\overline{x})}{\Psi_{G}(\overline{y})} \qquad \overline{x} = \overline{y} + \overline{c}$$

c: quadrature mesh (rotation around a nucleus)

Carbon pseudoatom: 4 electrons (SBK pseudo)

- ✓ LRDMC is a projection technique
- It is as an alternative variational approach for dealing with non local potentials
- ✓ Very stable simulation also for poor wave functions
- ✓ Smooth extrapolation as a function of the lattice space
- ✓ LRDMC is size consistent

S. Sorella, M. Casula, D. Rocca, J. Chem. Phys. 127, 014105 (2007)

 The Bloch theorem does not apply in a many-body framework: the k-point integration is ill-defined in the QMC real-space approach <u>Need of an explicit finite size scaling in QMC!</u> (some improvements along these lines but still not enough to afford large unit cell crystals)

 Sign problem in the stochastic projection
 <u>Fixed-node error in diffusion Monte Carlo</u> (alleviated by the wave function optimization but the residual error is sometime hard to estimate)

 Use of pseudopotentials necessary to reduce the computational cost <u>Lack of a consistent way to determine pseudopotentials in QMC</u> (usually determined by Hartree-Fock or DFT but the error can be significant in calculations under pressure)

 DMC is one of the most accurate *ab initio* methods for both molecular and extended systems

- It is variational (namely, one can check the convergence to the true ground state energy by variance extrapolation)
- It is a "local" theory (locality can be exploited to speed up the calculation)
- It scales well with the number of particles
- It is an **embarrassingly parallel** technique

- W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001)
- C. J. Umrigar, M. P. Nightingale, and K. J. Runge, J. Chem. Phys. 99, 2865 (1993)
- M. Casula, C. Filippi, and S. Sorella, Physical Review Letters 95, 100201 (2005)
- M. Casula, S. Moroni, C. Filippi, S. Sorella, Journal of Chemical Physics 132, 154113 (2010)
- Andrea Zen, Sandro Sorella, Michael J. Gillan, Angelos Michaelides, and Dario Alfè, Physical Review B 93, 241118(R) (2016)
- K. Nakano, R. Maezono, and S. Sorella, Phys. Rev. B 101, 155106 (2020)
- Quantum Monte Carlo approaches for Correlated Systems, Becca and Sorella, Cambridge University Press