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Diffusion Monte Carlo

Power method

Lattice-regularized diffusion Monte Carlo



Variational principle and QMC
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Looking for the ground state of a Hamiltonian H 

by minimizing the variational energy of a trial state

with      belonging to the Hilbert space

Variational freedom in choosing        (in general a 

complex many-body state)

Variational principle: 

  

EGS =
Y

min Y H Y

   

Y

   

Y



Minimization of the total energy
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Optimization of the parameters in the variational form of the 
wave function (it requires the computation of forces and the 
minimization of a noisy functional)

many body forces:                                            

Stochastic projection of the initial trial state which follows the 
imaginary time dynamics

iterative application of the Green’s function equation:

   

(H - ET )G(R,R0,t) = -
¶G(R,R0,t)

¶t

  

Y(n)( ¢ R ,t + t) = dR G(ò ¢ R ,R,t)Y(n-1)(R,t)

   

¶E

¶ci

=
¶

¶ci

Y H Y

Y Y

QMC molecular 
dynamics possible!



Diffusion Monte Carlo method
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Construct an operator which inverts spectrum of H
Use it to stochastically project the ground state of H

• Diffusion Monte Carlo (DMC)

• Power method

  

exp -t(H - ET ){ }

  

L - H

   

Y(n) = e-nt ( H-ET )Y(0) = Yi Y(0)

i

å Yi e-nt (Ei -ET )

Diffusion Monte Carlo projection

In the limit of large projection time, the initial state is projected to the 
ground state, provided the initial guess is non orthogonal



DMC Green’s function
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Y(n)( ¢ R ,t + t) = dR G(ò ¢ R ,R,t)Y(n-1)(R,t)

  

G( ¢ R ,R,t) = ¢ R e-t (H-ET ) R

where G is the Green’s function, solution of the imaginary time Schrödinger equation:

   

(H - ET )G(R,R0,t) = -
¶G(R,R0,t)

¶t

  

G( ¢ R ,R,0) =d( ¢ R -R)with the initial condition

Can we interpret G as a transition probability?
If yes, we can solve the projection equation stochastically. 

Rewrite the projection equation in an integral form:



Special cases
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• H=K  (V=0)

The Green’s function is given by a Gaussian

   

G( ¢ R ,R,t) = (2p t)-3N / 2 exp -
( ¢ R - R)2

2t

é 

ë 
ê 

ù 

û 
ú 

Weighting factor!

• H=V  (K=0)

   

(V(R) - ET )G(R,R0,t) = -
¶G(R,R0,t)

¶t
The Green’s function is given by an exponential

  

G( ¢ R ,R,t) = exp -t(V(R) - ET )[ ]d( ¢ R -R)

Diffusion process!



Trotter breakup
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e-t (K +V ) = e-tKe-tV + O(t 2)

   

G( ¢ R ,R,t) = (2p t)-3N / 2 exp -
( ¢ R - R)2

2t

é 

ë 
ê 

ù 

û 
ú exp -t(V(R) - ET )[ ]

Short time approximation valid up to the second order in time step, 
merging the diffusion and weighting process

DMC results must be extrapolated in the limit of zero time step

Problem with the above Green’s function: V(R) diverges when two 
electrons get close, explosion of the weights, algorithm unstable



Importance sampling
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Start from the integral equation:

  

Y(n)( ¢ R ,t + t) = dR G(ò ¢ R ,R,t)Y(n-1)(R,t)

   

˜ G ( ¢ R ,R,t) =
YT ( ¢ R )

YT (R)
¢ R e-t ( H-ET ) R

Multiply each side by the trial wave function
and define

  

f (n)( ¢ R ,t + t) = dR ˜ G (ò ¢ R ,R,t) f (n-1)(R,t)

where the importance sampled Green’s function is

  

YT (R)

  

f (n)(R,t) = Y(n)(R,t)YT (R)

and in the large projection time limit we sample the mixed distribution



Importance sampled Green’s function
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G( ¢ R ,R,t) = (2p t)-3N / 2 exp -
( ¢ R - R - tV(R))2

2t

é 

ë 
ê 

ù 

û 
ú exp -t(EL (R) - ET )[ ]

Drift velocity

Pushes the walkers away from the nodes, by enforcing the importance
sampling according to the trial wave function

Weighting factor with the local energy

The divergencies of the bare potential are cured by the fulfillment of the 
cusp conditions. The algorithm is now stable at least for bosons.

Two important new features

   

EL (R) =
HYT (R)

YT (R)



Fixed node approximation

11

For fermions, the mixed distribution             will not be positive definite: 

the nodes of the ground state can be different from the nodes of the trial 

wave function.

  

Y0YT

  

R     s.t.    Y(R) = 0Nodes:  3N-1 surfaces with 

Fixed node approximation: constrain the projected state to have the 

same nodes as the trial wave function

the mixed distribution can be interpreted as a probability distribution.

Solve the Schrödinger equation with different boundaries conditions, 

set by the nodes of the initial trial wavefunction.

• If the nodes are exact, no approximation

• The fixed node approximation gives an upper bound of the true 

ground state energy

  

Y0(R)YT (R) ³ 0          "R



Divergence at the nodes
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EL and V still diverge at the nodes of the trial wavefunction!
Regularization:

Velocity

Branching factor

Global cutoff → we lost the size-consistency



Size consistent cutoff
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Andrea Zen, Sandro Sorella, Michael J. Gillan, Angelos Michaelides, and Dario Alfè, 
Physical Review B 93, 241118(R) (2016)



Branching step
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Solution: multi-walkers (Nw) algorithm! 
Variance reduced by a factor Nw

large fluctuation for the weight (product of M random variables)

Branching step
Reconfiguration of the walkers before the variance becomes too large:

Choose new configurations among the old ones with a probability

Nw correlated random numbers:

Count how many za fall into a pi interval



DMC algorithm
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1. Sample initial walkers from 

2. Propose a new move from the distribution 

Drift and diffusion with x sampled from

Fixed node approximation: reject the move if 

Rejection scheme, accept the new move with probability

3. Branching step according to the weighting factor

4. Iterate 2. And 3. over walkers and for many generations in order 

to accumulate statistics.

   

YT (R)
2

  

¢ R = R+x + tV(R)

  

g(x) = (2p t)-3N / 2 exp -x 2 /2t( )

   

p = min 1,
YT ( ¢ R )

2
T(R, ¢ R ,t)

YT (R)
2
T( ¢ R ,R,t)

ì 
í 
ï 

î ï 

ü 
ý 
ï 

þ ï 

   

T( ¢ R ,R,t) = exp -
( ¢ R - R - tV(R))2

2t

ì 
í 
î 

ü 
ý 
þ 

  

sign(YT ( ¢ R )) ¹ sign(YT (R))



VMC and DMC transition probabilities
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VMC distribution function is given

Construct M which satisfies stationarity condition  

P is eigenvector of M with eigenvalue 1
P is the dominant eigenvector 

DMC different procedure!

The matrix M is given

We want to find the dominant eigenvector 

   

P(R) =
Y(R)

2

dR Y(R)
2

ò

  

M P(R) = P(R)

   

YT ( ¢ R )

YT (R)
¢ R e-t ( H-ET ) R

  

P = Y0YT



Power method
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Construct an operator which inverts spectrum of H
Use it to stochastically project the ground state of H

• Diffusion Monte Carlo (DMC)

• Power method

  

exp -t(H - ET ){ }

  

L - H

Power method projection

In the limit of large powers, the initial state is projected to the ground 
state, provided the initial guess is non orthogonal



Power method
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Power method on a lattice 

Propagator:

Lattice Hamiltonian:  ++−= +
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For fermions, lattice fixed node approximation 
to have a well defined transition probability



Effective fixed node Hamiltonian 

Hopping with sign change replaced by a positive diagonal potential

   

   

 

 

 

( ) / ( )    Green function   

              

ˆ ˆ   if   G 0      OFF DIAGONAL TERMS

ˆ 0       otherwise

ˆ ( ) ( )                 DIAGONAL TERM

( )

x y x y x y G G

eff

x y x y x y

eff

x y

eff

x x sf

sf x y

G H x y

H H

H

H V x v x

v x G

=  −  

= 

=

= +

= −   with 0  SIGN FLIP TERMx y

y

G 

LATTICE UPPER BOUND THEOREM !

0 0 0 0

eff eff eff eff effH H    

D.F.B. ten Haaf et al. PRB 51, 13039 (1995)

0  GS of eff effH



Limit  →

On the continuum, usually H not bounded from above!

, , 0   x x x xG H=  −    → 

 x k =

','( )

log( )
     ]0,1]  randomx

x xx x

r
r

G




−
= 



k distributed according to f

Green function expansion

','( )

','( )
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 −
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

( )
1

exp         G H   − =


( )
1

( ) 1
k

f k q q
−

= −

Probability of leaving x

Probabilty of leaving x after k time slices



Advantages of the power method

✓No instabilities in the effective fixed-node Hamiltonian 

(no nodal divergencies)

✓No time step error 

(exact continuous-time limit formulation)

✓Possibility of including non-local potentials 



Can a lattice scheme
be applied?

❑ For heavy atoms pseudopotentials are necessary

to reduce the computational time

❑ Usually they are non local ( ) ( )P i l i

l m

V x v x lm lm=  

In QMC angular momentum projection is calculated by using a 
quadrature rule for the integration

S. Fahy, X. W. Wang and Steven G. Louie, PRB 42, 3503 (1990)

Natural discretization of the projection

Pseudopotentials



Kinetic term: discretization of the Laplacian

2

2
1

2
 ( )             i i

d
a a

a

i i

T T I
O a

a

−

=

+ −
 →  = +

hopping term t→1/a2

ˆ
ˆ( ) ( )a T TT x x a =  +

2
2

2 2

( ) ( ) 2 ( )
( ) ( )

d f x a f x a f x
f x O a

dx a

+ + − −
= +

One dimension:

General case:

where

Lattice regularization



)()()1()()( 2aOxpxpx ba +−+

If a and b are incommensurate, the random walk can sample all the space! 

Possible choice: double mesh for the discretized Laplacian

2 1b a Z= +

Lattice regularization



Two hopping lengths

Example: 1D system                   electrons: 1 up, 1 down, PBC

0.25      2sa r b a= =

0.25      5sa r b a= =



Two hopping lengths

0.25      2sa r b a= =

0.25      5sa r b a= =

Example: 1D system                   electrons: 1 up, 1 down, PBC



Double mesh optimized

16/07/202128

Most efficient choice

with and

from Thomas-Fermi model

K. Nakano, R. Maezono, and S. Sorella, 
Phys. Rev. B 101, 155106 (2020)



➢ Continuous limit: for a→0, Ha→H

➢ Local energy of Ha = local energy of H

,
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Definition of lattice regularized Hamiltonian 

a a aH V=  +

Faster convergence in a!

Lattice regularized H



Size-consistent definition of Va

Near the nodes and near the nuclei, 
the modified potential Va can diverge negatively 

far from the nodes

close to the nodes

where



Given x and Ha finite number of x’
Transition probability px,x’ = Gx,x’/Nx

Configuration x, weight w, time T
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Lattice regularized DMC: the algorithm



extrapolation properties

DMC LRDMC 

Trotter approximation
 

For each a 

well defined effective H 

 extrapolation
 a extrapolation 



 behaviour  a

4
 behaviour  

 

 

same diffusion constanta =

CPU time
1 2( )a − −

DMC vs LRDMC



Convergence example



Off diagonal matrix elements

   ( ) / ( )    propagator   x y x y x y G GG H x y=  −  

From the discretized Laplacian:

From the non local pseudopotential:

 2

( )
            

( )

G
x y

G

xp
G x y a

a y


= = 



  

( )2 1
v ( ) cos        

4 ( )

G
x y l l x y

l G

xl
G y P x y c

y




+ 
 = − = +    



c: quadrature mesh (rotation around a nucleus)

a: translational vectors 

Possibility of including pseudopotentials



Stability

Carbon pseudoatom: 4 electrons (SBK pseudo)

LRDMC

standard DMC



✓ LRDMC is a projection technique

✓ It is as an alternative variational approach for dealing with 

non local potentials

✓ Very stable simulation also for poor wave functions

✓ Smooth extrapolation as a function of the lattice space

✓ LRDMC is size consistent

LRDMC properties



Ab initio quantum Monte Carlo
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DFT part

Solve Kohn-Sham equations
gaussian orbitals 

Interfacing

Slater determinant from 
DFT orbitals

:

QMC part (I)

  

J(r1,...,rN) DDFT

­ (r1,...,rN)DDFT

¯ (r1,...,rN)
(diffusion Monte Carlo):

QMC part (II)

  

e-tH  Y(r1,...,rN )

  

jl (r)

Casula, Moroni, Sorella, Filippi, JCP 131, 154116 (2010) S. Sorella, M. Casula, D. Rocca, J. Chem. Phys. 127, 014105 (2007)



Ab initio scheme (limitations)
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• The Bloch theorem does not apply in a many-body framework: 
the k-point integration is ill-defined in the QMC real-space approach
Need of an explicit finite size scaling in QMC!
(some improvements along these lines but still not enough to afford large unit cell 
crystals)

• Sign problem in the stochastic projection
Fixed-node error in diffusion Monte Carlo 
(alleviated by the wave function optimization but the residual error is sometime 
hard to estimate)

• Use of pseudopotentials necessary to reduce the computational cost 
Lack of a consistent way to determine pseudopotentials in QMC
(usually determined by Hartree-Fock or DFT but the error can be significant in 
calculations under pressure)



Ab initio QMC scheme (advantages)
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• DMC is one of the most accurate ab initio methods for both molecular and 
extended systems

• It is variational (namely, one can check the convergence to the true ground state 
energy by variance extrapolation)

• It is a ”local” theory (locality can be exploited to speed up the calculation)

• It scales well with the number of particles

• It is an embarrassingly parallel technique

Formation 
energies

JCTC 13 (2017)
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