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Lecture III  : QMC Wave function Optimization  

Reminding  Variational quantum Monte Carlo

Recent  progress in stochastic optimization

Correlated sampling

Direct evaluation of energy derivatives

Stochastic reconfiguration or Natural gradients

Examples
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Jastrow |Mean Field> : known facts

1D.    The Jastrow- Fermi gas is the exact ground state for the Tomonaga-Luttinger
model (B. Tayo and S.Sorella Phys. Rev.B, 2008)

D>1  Spin-Wave theory ground state is a Jastrow |MF=Neel>  

Good description of Mott insulators ( M. Capello et al. PRL 2005)

Spin liquid, the ground state of the Kitaev model can be written as a Gutzwiller
projected pairing function with triplet correlations, again J( Gutzwiller-projection)-
MeanField=Pfaffian function discussed before.

Superconductivity in strongly correlated models (e.g. Hubbard) without the electron-
phonon mechanism.

Laughlin’s WF FQHE is a (complex) Jastrow- MeanField (Jain PRB’ 90)

Recently Valence bond Solids (Kekule’ ) within a single determinant ansatz, taking
into account several configurations.
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Variational Monte Carlo 

Sampling the electron moves with Markov chains

 The local energy 

The variational principle
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The Jastrow  Mean-Field ansatz

You believe in human learning and define a wave function

where “α” indicates a set of  variational parameters and J is a correlation term.

For instance J = Gutzwiller projection,  Jastrow correlation, three-body ….                                                     

The  expectation value of the Hamiltonian, due to J,   can be evaluated statistically:

by QMC sampling

In  the last  decade ML and VMC were able to handle several  parameters even when 
the target energy  is known only statistically.
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The ‘’game’’ started in ‘65 by McMillan

He4 was studied  with  2-parameters :  

The  standard:  parameters were 
optimized with several independent 
energy runs: 
1) at most two variational parameters
2) large computational resources 

for a  single optimization

But also ‘’recently’’ (M. Ogata et al. PRL 85 (2000)  J=         : 
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Several variational parameters problem

Many parameters →Mean-field self consistency

e.g. Slater determinant in a lattice contains
L (number of sites) x N (number of electrons) 
variational parameters. No problem with 
Hartree, Hartree-Fock, LDA, CGA,HSE…

In a many-body wf, self-consistent approaches  are not 
available (what are the sc-fields?) and 
→Many parameters optimization  problem
→Moreover the energy evaluation is noisy
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Correlated sampling, Umrigar  1988

We want to compute the energy 

Suppose to employ a Markov chain with the original  weight  

Then we can compute:

Go→
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Problems in correlated sampling

Essentially variance R(x) ~  exp ( # electrons)

Thus the approach is limited to very  few electrons N<= 10

Some improvement was to consider the minimization of  the  
variance but the problem is only alleviated not solved.
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Second  progress, calculation of energy derivatives

Go→
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Next progress…

Next attempt ~ 2000: try to compute derivative and apply steepest descent:

For small enough Δ the energy should go down. So one should optimize at each
step by determining the optimal Δ: 

Go (explain SD)→
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H2: simplest Jastrow+simplest geminal

By symmetry only two  
parameters λ & Z in g  
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In practice one chooses Δ (tpar in TurboRVB)  once for all
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If you want to try
steepest descent
in TurboRVB:
kl=-2
You can also use
ADAMS (from ML) 
(yes_adams=.true.)
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Setting constant Δ is equivalent to optimize:

We implicitly optimize a Cost function at each step that penalizes big 
changes of variational parameters. 

Is this the optimal thing to do?  
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Steepest descent disaster
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There are directions that are extremely difficult to optimize, 
usually the most physical ones…
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H2 molecule (see tutorial)   R=0.8 a.u.  4 parameters optimization
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Stochastic  reconfiguration

For each variational parameter αk of a vector

We can define an operator  Ok : 

→

Go→
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Stochastic reconfiguration

But we are interested to normalized wf

Thus: 
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Stochstic reconfiguration or natural gradients

But now we can ask how much we actually
change the  wf. when we change

This matrix is also known as the  Fisher information
metric F=4 S of the probability

Go→
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Stochastic reconfiguration or natural gradients

Thus instead of using the Euclidean metric we can use the more 
appropriate Fisher  information metric to define our cost function:
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See: S. S. PRL 80, 4558 (1998), PRB 64, 240512 (2001)
Natural gradients: S.I. Amari Neural Computation 10, 251–276 (1998) 
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The final updates for small  Δ

Steepest descent:

Newton-Raphson: 

SR or natural gradients:
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Test case H2 4  variational parameters ε=0.01

)1(,, +→ iiii ss

In the inversion a regularization necessary:

the simplest and most efficient is to scale the

variance (diagonal elements):
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Removing most of the slowness of steepest

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60

 P
a

ra
m

e
te

r 
v
a

lu
e

s
  

 Steepest descent iterations  

a
b
Z
l

 0  100000  200000  300000  400000  500000

 Steepest descent iterations  

a
b
Z
l

14/07/2021TREX e-School on Quantum Monte Carlo with TurboRVB



23

A more difficult optimization😇
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Benzene dimer: S.S., M. Casula and D. Rocca  JCP 127, 014105 (2007)
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Why is that?

It is well known that the steepest is slow for Hessian matrices with large 
condition number r:      Namely #Iterations >~ r
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Here is the condition matrix of SR in H2

Only 4 variational parameters! 
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That’s why for R=0.8 we need 400000 iteration

Correlated wave functions are nice but variational parameters
entangled→ SR ill conditioned soon
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Concluding remarks

• Optimization of several parameters is nowdays possible 
within QMC thanks to SR or natural gradients

• Hessian method is in principle faster and a further
improvement is possible by using partial information of it→
the linear method

• More popular optimized known in ML (e.g.  ADAMS) are  
much less accurate and useless for our accuracy target.
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Calculation of  forces in QMC

At variance  of normal parameters α the atomic coordinates R appear
also in the Hamiltonian HR and we need to compute R,α derivatives of:

where now:

is also dependent upon both α and R 
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Start from correlated  sampling

Thus by differentiating with respect to dR we obtain:

Go→
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Helmann-Feynmann and Pulay contributions
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First problem: α→α(R) 

The variational parameters α(R) depend on R because we should 
expect correction o(dR) if we reoptimize the wf at R+dR 

Thus we should add:

But if we have done a good optimization and are at an energy minimum:

because they are  just  the Euler’s conditions of 
minimum energy (not necessarily the absolute one)
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Second problem: infinite variance

Assume                       defines a variable indicating the  distance from the 
so called nodal surface n=0.

Then  for n→0 

The mean of the above random variable is finite but  their variance:
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Solution: Reweighting  method

Then we have to compute average of finite random variables:
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Chosen R(x)

Since n vanishes as our determinant/Pfaffian of a matrix M.
Each element of M-1 blows up as 1/n  and therefore the choice: 

Satisfies the requirements and make the variance FINITE
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Example on hydrogen

Sometimes you can 
definitively solve 
a boring problem in 

QMC

Markov iterations
000

~ n2
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But how to compute  all these messy  derivatives?

X,R and WF parameters 

TASK1:   x,R → dist(I,i)   I=1,2,…,#ion (nion) ,i=1,2,…,#el (nel)   electron-ion distances.
TASK2:   x,R,dist→ kel,vpseudolocal,prefactor,ivic,tmu  (all electron coordinates in the pseudo mesh and LRDMC mesh ivic,

with  matrix element coefficients: prefactor for pseudo mesh,  and tmu for LRDMC laplacian discretization)
TASK3:   R → iond(I,J)     (ion-ion distance)
TASK4:  x,R  Z’s  (exponents basis)→ winv(1:nelorb,0:indt+4,1:nel),winvj(nelorbj,0:indt+4,1:nel)    (basis  array)
TASK5:   winv,winvj,jasmat,detmat,detmat_c,mu_c→ winvbar,winvjbar     (Geminal Jastrow matrices contracted with basis)
TASK6:  iond→ vpot   (Classical Coulomb ion  potential)
TASK7:  vpseudolocal → vpot (add Ewald if  PBC  and pseudo contribution if present) 
TASK8: winv,winvbar  → logpsidetln, ainv  (Inverse Geminal  matrix  for fast updates)
TASK9: x,R,winvj,winvjbar, Z’s→ jastrowall_ee(1:nel,1:nel,0:indt+4),jastrowall_ei(1:nion,1:nel),tabpip (for fast updates Jastrow)

→ logpsi 
TASK10: x,R,ainv,winvbar→ winvup,winvdo
TASK11: tabpip,winvup,winvdo→ eloc

eloc,logpsi 

The   subroutine name is compute_eloc_logpsi and is badly written  as many  input are explicitly passed (huge call) and several
others are passed via  f90  modules. A refactoring of  this routine could help for future developments.  
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ADJOINT ALGORITHM DEFINITION

TASK(INPUT→OUTPUT)
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AAD   of compute_eloc_logpsi, the new adjoint of the input

TASK11_b
TASK10_b
…

TASK1_b

Thus we can compute all necessary for ion forces and/or optimization

GPU implementation is trivial, each  task BLAS3 offload and that’s it.
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Computing  forces with  AAD 

Cpu time referenced to simple VMC (only energy)

for computing all 3M force components in water.

Use of pseudopotentials & 

Jastrow  → 11 instances

For DMC the overhead to 

Compute all forces is ~0

but there is approximation 
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It is a theorem it should be at most
4 times more expensive 
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