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Lecture Il : QMC Wave function Optimization

xReminding Variational quantum Monte Carlo
xRecent progress in stochastic optimization
xCorrelated sampling

xDirect evaluation of energy derivatives
xStochastic reconfiguration or Natural gradients
xExamples
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R _->< Jastrow | Mean Field> : known facts

x 1D. The Jastrow- Fermi gas is the exact ground state for the Tomonaga-Luttinger
model (B. Tayo and S.Sorella Phys. Rev.B, 2008)

»x D>1 Spin-Wave theory ground state is a Jastrow | MF=Neel>
» Good description of Mott insulators ( M. Capello et al. PRL 2005)

» Spin liquid, the ground state of the Kitaev model can be written as a Gutzwiller
projected pairing function with triplet correlations, again J( Gutzwiller-projection)-
MeanField=Pfaffian function discussed before.

» Superconductivity in strongly correlated models (e.g. Hubbard) without the electron-
phonon mechanism.

» Laughlin’s WF FQHE is a (complex) Jastrow- MeanField (Jain PRB’ 90)

» Recently Valence bond Solids (Kekule’ ) within a single determinant ansatz, taking
into account several configurations.
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o e@P
D= T v (@)

5 —» {Tity T = {ri01,r209,...,rNON}

o Sampling the electron moves with Markov chains

/
L — X
® r — ') = min (o' |9)]°
o (2 i)
(V| H|P) 1

oy /dmw(:p)eL(m)mM Z er,(ZTsample)

o The variational principle M samples

(x| H|V)

er(x) = (2 T) « The local energy
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You believe in human learning and define a wave function ‘\Ija> — J|\IJMF>
where “a” indicates a set of variational parameters and J is a correlation term.

For instance J = Gutzwiller projection, Jastrow correlation, three-body ....

The expectation value of the Hamiltonian, due toJ, can be evaluated statistically:

v, | H VY,
EVMc(Ck) — <<\If‘ ‘\I‘/ >> by QMC sampling

In the last decade ML and VMC were able to handle several parameters even when
the target energy is known only statistically.

14/07/2021
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R _->< The “game’’ started in ‘65 by McMillan

He, was studied with 2-parameters: J = Hexp(_al/r?j?)
i<j
But also “recently’”” (M. Ogata et al. PRL 85 (2000) J=>( :

-0.429 J/t=0.3, 6=0.12 Ei]
" The standard: parameters were

oA | b optimized with several independent
; \ t energy runs:

043 | Sl 1./ . o

H‘ﬁ ﬁ%{' 1) at most two variational parameters
ososp e 1 2) large computational resources
0.1 0.12 0.14 0.16 0.18 0.2 0.22 024 0.26

A for a single optimization
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R _->< Several variational parameters problem

Many parameters = Mean-field self consistency

e.g. Slater determinant in a lattice contains

L (hnumber of sites) x N (hnumber of electrons)
variational parameters. No problem with
Hartree, Hartree-Fock, LDA, CGA,HSE...

In @ many-body wf, self-consistent approaches are not
available (what are the sc-fields?) and

- Many parameters optimization problem

- Moreover the energy evaluation is noisy
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-R :')( Correlated sampling, Umrigar 1988
Vo |H|V o)

<\Ijoz’ |\Ija’>

Suppose to employ a Markov chain with the original weight

Wale) = Walo)? # o @) i m) = = o)

We want to compute the energy E(o/) —

Then we can compute: R(x) =

E. = Zx W(CE)R(QE)G% (ZC) _ M Sg:nples L ( b ) ( P )
M samples Go->
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R _->< Problems in correlated sampling

Essentially variance R(x) ~ exp ( # electrons)

Some improvement was to consider the minimization of the
variance but the problem is only alleviated not solved.

Thus the approach is limited to very few electrons N<=10
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rq —>< Second progress, calculation of energy derivatives

Y (@) H Y (1)
P = e
O F(a) = 2cov(er(x),O(x))
mx) o Ul (x)
Olx) = 0,In|V,(x)]
ey Y@

U, (x) Go~>
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Next attempt ~ 2000: try to compute derivative and apply steepest descent:

E
ozﬁc—ozk:&uk:—A%% = A fi

For small enough A the energy should go down. So one should optimize at each
step by determining the optimal A:

—

Mina E(a + A
A (OH_ f) Go (explain SD)—=>
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R- H2: simplest Jastrow+simplest geminal

J(Z) = J1(Z)J2(Z) Basis :¢1 o(F) = exp(—Z|F — Rq4|?) a = 1,2
. _
J(Z) = exp |y uei(i) g(7,7™) = > Nia,jpia(F)djo(7)
_I:]_ | ia,jb
Jo(Z) = exp Zuee(\f} — 75)) )\11,11 = A2 =1
L T A11,12 = A12.11 = A
r— R
uez(F) _ _ZZI ‘7“ : I’_}
- 1+ a|r — Ry| By symmetry only two
r parametersA & Zing
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R _->< In practice one chooses A (tpar in TurboRVB) once for all

If you want to try
steepest descent
in TurboRVB:
kl=-2

You can also use

e’ | ADAMS (from ML)
@8 (yes_adams=.true.)

Energy a.u.

0O 10 20 30 40 50 60 70 80 90 100
Steepest descent iterations
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R _->< Setting constant A is equivalent to optimize:

Cost(da) = E(a) + Z ((5ozkfk | 21A 504%)
k

We implicitly optimize a Cost function at each step that penalizes big
changes of variational parameters.

Is this the optimal thing to do?
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There are directions that are extremely difficult to optimize,
usually the most physical ones...

H, molecule (see tutorial) R=0.8 a.u. 4 parameters optimization

0.9 | | | |
0.8 g_%'_ 1

@ 0.7 ¢ zZ A % 0.9 A

5 050 g 974

P ooel s 0o

O 03§ O 04 f
02 0.3
0.1 0.2

0 100000 200000 300000 400000 500000 0 200 400 - 800 1000

Steepest descent iterations Steepest descent iterations

TREX e-School on Quantum Monte Carlo with TurboRVB 14/07/2021



TR=>4

For each variational parameter o, of a vector

a={a, s, -0y}

We can define an operator O, :
« \Ij&’
Ok(.’IJ) — 8\1’2&?(37()38) for \If@*(.’IJ) 7& 0

(2|Oklz’) = 0z,2Ok()

p
‘\If&*_|_555> — |1+ Z 5ak0k |\If@*>
k=1 i

Go—~>
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But we are interested to normalized wf

Thus:
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R _->< Stochstic reconfiguration or natural gradients

But now we can ask how much we actually
change the wf. when we change Oé;c — Q + 0

Va)  |%a) |
— 5ak5ak/Sk,k/
Pall 1] Z

Sk,k’ — COV(Ok, Ok/)

This matrix is also known as the
F=4 S of the probability pa () \If&(x)2

ds® = |

Go—~>
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R _->< Stochastic reconfiguration or natural gradients

Thus instead of using the Euclidean metric we can use the more
appropriate Fisher information metric to define our cost function:

b . ds?
Cost(6&) = E(a) — »  frbok

MinsgCost(5&) — Sae = A ~Si ) fir
k/
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Steepest descent: o, = Afk
Newton-Raphson: da = Z Hk_llc'fk’
k/

SR or natural gradients: 50% — A E Sk_llc’fk/
k/

See: S. S. PRL 80, 4558 (1998), PRB 64, 240512 (2001)
Natural gradients: S.I. Amari Neural Computation 10, 251-276 (1998)

TREX e-School on Quantum Monte Carlo with TurboRVB 14/07/2021



[R_-x Test case H, 4 variational parameters €=0.01

Stochastic Reconfiguration iterations
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Removing most of the slowness of steepest

0.9 d

0.8 |Lx
8 0.7 |
>
© 0.6 A
3 ><§“'
9 0.5 |k
GED 04 ZSE :
© ) :
= ()
a 03¢

9)
0.2 u
0.1 ¢
0

0 10 20 30 40 50 60 O 100000 200000 300000 400000 500000
Steepest descent iterations Steepest descent iterations
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+ 10404 VMC parameters

-150.05

_ I
0.695 Nw &= 0.0001

-150.10 |
- 0.690 |

Two body Jastrow

Energy (H)

-150.15F Wy A Ug

Iterations

Benzene dimer: S.S., M. Casula and D. Rocca JCP 127, 014105 (2007)
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-rR :->< Why is that?

It is well known that the steepest is slow for Hessian matrices with large
condition number r:  Namely #lterations >~ r

——
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rQ ->< Here is the condition matrix of SRin H

6 r
1x10 4

o ’
£ 100000 |
S ,
o ,
P 10000 |
D i
O
= |
-
= 1000 |
[ F
S |
'—g I
O i

10

1 2 3 4

. R (a.u.) .
Correlated wave functions are nice but variational parameters
entangled% SR il cond|t|oned soon
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-rR :->< Concluding remarks

* Optimization of several parameters is nowdays possible
within QMC thanks to SR or natural gradients
 Hessian method is in principle faster and a further

improvement is possible by using partial information of it—>
the linear method

 More popular optimized known in ML (e.g. ADAMS) are
much less accurate and useless for our accuracy target.

TREX e-School on Quantum Monte Carlo with TurboRVB 14/07/2021



TR=><€

At variance of normal parameters a the atomic coordinates R appear
also in the Hamiltonian H; and we need to compute R,a derivatives of:

U, p|Hp|W, .
Enq = Setllillan) _ s e (q)

| <\Ija,R‘\Ija7R> »
H|U,,
where now: e%’R(x) — <‘/IZ‘ ‘\I‘/ 1>?>
L\ ¥ o R

is also dependent upon both o and R
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R _->< Start from correlated sampling

o - R+dR,
Y Mmne 2 ()RR g

xrEsamples

|\
PR e e W €
xrEsamples ’

ERidRa =

Thus by differentiating with respect to dR we obtain:

Go~>
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Helmann-Feynmann and Pulay contributions

dER Q
Fr = AR — FHelmann—Feynman =+ FPulay
FHF — <8R€ :——2036 z
o 2 o \
Fp = ZCOV(OR,EZL’R) — _M ZOR(QZ‘Z) X (GL’R(ZIZ?;) — EVMC,

O
=
3

|

Or1og |Wa, r(7:)
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The variational parameters a(R) depend on R because we should
expect correction o(dR) if we reoptimize the wf at R+dR

Thus we should add: F' = Fgrp + Fp — Z(aROé) (804E04,R)

84

But if we have done a good optimization and are at an energy minimum:

aanz,R = (0 Va because they are just the Euler’s conditions of
minimum energy (not necessarily the absolute one)
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R _->< Second problem: infinite variance

Assume Tl = ‘I’(QU) defines a variable indicating the distance from the
so called nodal surface n=0.

1
Then for n>0 —336%’R or 036%’R xX —  m(n) x n?
n

The mean of the above random variable is finite but their variance:

/ dn(n2)(1/n%) — oo
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-R :->< Solution: Reweighting method

U ()

R(x) R(x) oc n* for n — 0

m(z)

Then we have to compute average of finite random variables:

—0e%"™ x R(z) and — Oge;"*R(z) — FINITE for n — 0
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Since n vanishes as our determinant/Pfaffian of a matrix M.
Each element of M! blows up as 1/n and therefore the choice:

1 2
= XN
1+ > [eM ]2
1]

R(x)

Satisfies the requirements and make the variance FINITE
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% 1

o N=128

< 1500 -

>

& 4 RE)=1 -

@ 1000 (x) 2 Sometimes you can
£ Rx)f ~n* C

S definitively solve

O 500 - . .
X A a boring problem in
:i; 0 &&ﬁw&ﬁﬁgwam#@hﬁgaﬁ4@%&;;ﬁgi%bwﬂ&@ﬁggﬁﬁfﬁﬁﬁﬁﬁﬁhﬂﬁéé%;iwﬁﬁ (:1[P\/1(::

0

- . .

o 0 20000 400000

Markov iterations
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rQ —>< But how to compute all these messy derivatives?

_ _

TASK1: x,R =2 dist(l,i) 1=1,2,...,#ion (nion),i=1,2,...,#el (nel) electron-ion distances.

TASK2: x,R,dist> kel,vpseudolocal,prefactor,ivic,tmu (all electron coordinates in the pseudo mesh and LRDMC mesh ivic,
with matrix element coefficients: prefactor for pseudo mesh, and tmu for LRDMC laplacian discretization)

TASK3: R -2 iond(l,J) (ion-ion distance)

TASK4: x,R Z’s (exponents basis)=> winv(1:nelorb,0:indt+4,1:nel),winvj(nelorbj,0:indt+4,1:nel) (basis array)

TASK5: winv,winvj,jasmat,detmat,detmat_c,mu_c—> winvbar,winvjbar (Geminal Jastrow matrices contracted with basis)

TASK6: iond—> vpot (Classical Coulomb ion potential)

TASK7: vpseudolocal 2 vpot (add Ewald if PBC and pseudo contribution if present)

TASK8: winv,winvbar = logpsidetin, ainv (Inverse Geminal matrix for fast updates)

TASK9: x,R,winvj,winvjbar, Z's—> jastrowall_ee(1:nel,1:nel,0:indt+4),jastrowall_ei(1:nion,1:nel),tabpip (for fast updates Jastrow)

- logpsi
TASK10: x,R,ainv,winvbar=> winvup,winvdo
TASK11: tabpip,winvup,winvdo—> eloc

The subroutine name is compute_eloc_logpsi and is badly written as many input are explicitly passed (huge call) and several
others are passed via f90 modules. A refactoring of this routine could help for future developments.
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TASK(INPUT->OUTPUT)

TASK,,(OUTPUT — INPUT)

9y, OUTPUT OUTPUT,
JINPUT,;

INPUT = INPUT A
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rg _—>< AAD of compute_eloc_logpsi, the new adjoint of the input

intihy L= e
ey, = =
8 RZ = 0 B, €L
n =1 — =
TASK1 b Rz _ aﬁz lIl (\If)

Thus we can compute all necessary for ion forces and/or optimization

GPUimplementation is trivial, each task BLAS3 offload and that’s it.
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Cpu time referenced to simple VMC (only energy)
for computing all 3M force components 1n water.

It is @ theorem it should be at most

5 |
s 200t . .

> | 4 times more expensive

o [ .

o Y Use of pseudopotentials &
n [ .

$ 100} Jastrow -2 11 instances

O i

x | —A—AD _

= S0t —#— Finite difference

> N For DMC the overhead to
o 0 —— , .

€ 0 8 16 24 32 40 Compute all forces is ~0

# Water molecules but there 1s approximation
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Thank you!

Follow us
@ company/trex-eu

O @trex_eu

L] |
Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union r2 _><
Horizon 2020 research and innovation programme under Grant Agreement No. 952165. e S




