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ab initio Hamiltonian
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Coulomb electron-electron, electron-ion interactions
+ quantum kinetic term

Hard problem to solve, 
but there are different (approximated) ways to tackle it…
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Possible methods to solve it
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• Density functional theory methods
Density based methods

Self-consistent solution of an effective mean-field Hamiltonian
Large systems but approximate exchange/correlation

Scaling: N2logN - N3

• Post-Hartree-Fock methods (MCSCF, CC, CI,..) 
Wavefunction based methods (Gaussian single-particle basis set) 

Expansion in many determinants with slow convergence
Very accurate on small systems

Scaling: N4 to exponential

• Quantum Monte Carlo techniques
Wavefunction based methods (explicitly correlated wave function)

Stochastic solution of the Schrödinger equation
Most accurate benchmarks for medium-large systems

Scaling: N3-N4



When this choice becomes critical
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• In presence of strong electron correlation
➢ Strong local Coulomb repulsion (aka strong correlation for 

a physicist)
➢ Molecular dissociation limit (strong correlation for a 

chemist)
➢ Predominance of charge or spin fluctuations (Mott 

phases/magnetic phases)
• When high accuracy is required
➢ Competing phases
➢ Weak dispersive forces
➢ Subtle interplay between structural and electronic 

degrees of freedom 



Mott insulators
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d or f orbitals: very localized on the atomic sites 

→ Strong local Coulomb repulsion U (large Hubbard U parameters) 

“ATOMIC PHYSICS” becomes relevant 

(breakdown of the local density approximation in DFT functionals)

Textbook phenomenon

Mott transition 

charge freezing to minimize local U repulsion



Fermi surface topology
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Hydrogen bond and proton hopping
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Protonated water clusters

Zundel ion

Protonated water hexamer

the OO distance at which the proton hopping takes place 
strongly depends on the level of theory 



Correlated wavefunction
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Correlation: beyond Hartree-Fock!

• Correlation coming from the Jastrow factor (usually called dynamical correlation)

• Correlation coming from the antisymmetric part (usually called static correlation)

HY r1,..., rN( ) = EY r1,..., rN( )



Correlated wavefunction
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Correlation: beyond Hartree-Fock!

• Correlation coming from the Jastrow factor (usually called dynamical correlation)

• Correlation coming from the antisymmetric part (usually called static correlation)

HY r1,..., rN( ) = EY r1,..., rN( )

Drawback: expectation value of the Hamiltonian 

becomes much harder to compute than in Hartree-Fock
if a Jastrow-correlated wavefunction is used



Need of Monte Carlo integration
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Deterministic numerical integration (à la Simpson) in 3N variables 
At finite mesh M, its error grows exponentially with N

Stochastic numerical integration on M points
Its error decreases as                independently of N!!!

In 3D already with 3 particles, the Simpson error decreases slower than              , 
with M number of mesh points

For large N, the stochastic way of performing the integral 
is much more efficient!!!

Variational energy E: quantum expectation value of the Hamiltonian H



Multidimensional integration
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Quadrature (Simpson–like) schemes: 

• A regular grid with 10 mesh points per axis would require 10d·N 

evaluations of the integrand, for N particles in d dimensions, 
i.e., 1030 operations for 10 particles in 3 dimensions! 

• A simple operation takes say about 10−9s on a present 
computer. A year is about 3 × 107s. 

• Integration by quadrature even for 10 particles would take too 
many years!



Multidimensional deterministic integration
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Quadrature (Simpson–like) schemes: 

• A regular grid with 10 mesh points per axis would require 10d·N 

evaluations of the integrand, for N particles in d dimensions, 
i.e., 1030 operations for 10 particles in 3 dimensions! 

• A simple operation takes say about 10−9s on a present 
computer. A year is about 3 × 107s. 

• Integration by quadrature even for 10 particles would take too 
many years! About 3 × 1013 years! 

PS: age of the universe is about 109 years



Target error
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• Goal: Computing the integral in a reasonable amount of time at 
a fixed target error

• How the error scales with the number of points M?



Error scaling for quadrature
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Monte Carlo integration
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(R is a d N dimensional vector)



Reduce the error by a factor of k
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Deterministic intergation Stochastic intergation

Exponential behavior with N Independent of N

d N multidimensional integral



Reduce the error by a factor of k
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Deterministic intergation Stochastic intergation

Exponential behavior with N Independent of N

d N multidimensional integral



Stochastic integration
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How to generate configurations       
distributed according to               ? 



Stochastic integration
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How to generate configurations       
distributed according to               ? 

By using random numbers!



Random numbers
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Pseudorandom numbers
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From uniform variate to non-uniform one? 
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How to generate random numbers 
distributed according to non-uniform variates 

starting from pseudorandom numbers 
uniformely distributed?



Sampling non-uniform variates: the inversion method
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Sampling non-uniform variates: the rejection method
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Static and dynamic Monte Carlo (MC) methods
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Random Walks (Markov Chains)
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Detailed balance condition
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How to obtain the desired distribution      as the stationary one? 

Detailed balance condition



Sampling and acceptance matrices
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Metropolis choice for acceptance
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Implementation of Metropolis algorithm
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Comments on Metropolis
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• If the proposal matrix T is chosen to be symmetric,

the algorithm is called simple Metropolis.

• The proposal matrix can be non-symmetric to decrease   

the correlation time between two configurations 

(autocorrelation time); in this case the algorithm is called 

generalized Metropolis.
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About the implementation
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Variational Monte Carlo energy
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Monte Carlo Estimates and Averages
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Central limit theorem
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Variance of the sample average
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Autocorrelation time
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Block average and estimate of errors 
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Block average and estimate of errors 
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Variational Monte Carlo energy
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Variational Monte Carlo algorithm
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With the aim to obtain a set of                  distributed as 

1. Pick a starting Ri and initialize the configuration

2. Advance the configuration from Ri to Rf

a) Sample R’ from 

b) Calculate the ratio 

c) Accept or reject with probability F=min[q,1]

pick a uniformly distributed random number 

if p < F, move accepted              set Rf =R’

if p    F, move rejected                set Rf =Ri

3. Throw away first k configurations of equilibration time
4. Collect the averages and block them to obtain the error bars

  

R1,...,RM{ }

  

T( ¢ R |Ri)

   

q=
T(Ri | ¢ R )P( ¢ R )

T( ¢ R |Ri )P(Ri )

  

pÎ [0,1[
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Zero variance principle
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Within VMC, we can use any “computable” wave function, if it is

• Continuous, normalizable, proper symmetry

• Finite variance

since the Monte Carlo error goes as  

Zero variance principle
If the wave function  is an exact eigenstate of H, the local energy EL is a constant, and 
the variance is zero. 
Therefore, the closer the wave function to an eigenstate, the faster the convergence of 
Monte Carlo error with the number of samples M. 
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