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x“Supremacy” of Quantum Monte Carlo
xStochastic vs deterministic integration
xSampling a target probability distribution

xVariational quantum Monte Carlo
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r2->< ab initio Hamiltonian
cam

Coulomb electron-electron, electron-ion interactions
+ quantum kinetic term

H\Ij(rlvﬂ'ar]\f) :EGS\IJ(rlw“arN)

Hard problem to solve,
but there are different (approximated) ways to tackle it...



I.Q ->< Possible methods to solve it
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e Density functional theory methods
Density based methods
Self-consistent solution of an effective mean-field Hamiltonian
Large systems but approximate exchange/correlation
Scaling: N%logN - N3

¢ Post-Hartree-Fock methods (MCSCEF, CC, Cl,..)
Wavefunction based methods (Gaussian single-particle basis set)
Expansion in many determinants with slow convergence
Very accurate on small systems
Scaling: N* to exponential

a e Quantum Monte Carlo techniques I
Wavefunction based methods (explicitly correlated wave function)
Stochastic solution of the Schrodinger equation
Most accurate benchmarks for medium-large systems
\_ Scaling: N3-N* -




I.Q ->< When this choice becomes critical
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* |In presence of strong electron correlation
» Strong local Coulomb repulsion (aka strong correlation for
a physicist)
» Molecular dissociation limit (strong correlation for a
chemist)
» Predominance of charge or spin fluctuations (Mott
phases/magnetic phases)
 When high accuracy is required
» Competing phases
» Weak dispersive forces
» Subtle interplay between structural and electronic
degrees of freedom
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r2->< Mott insulators
0] [

d or f orbitals: very localized on the atomic sites
Uy = [ drde0u(6) 716,

- Strong local Coulomb repulsion U (large Hubbard U parameters)
“ATOMIC PHYSICS” becomes relevant
(breakdown of the local density approximation in DFT functionals)

\r—r

Textbook phenomenon
- Mott transition
- charge freezing to minimize local U repulsion




I.Q ->< Fermi surface topology
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r2—>< Hydrogen bond and proton hopping

Protonated water clusters Protonated water hexamer
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strongly depends on the level of theory




I.Q ->< Correlated wavefunction
0] @

HY(r,....ry)=E¥Y(£,....1y)
Correlation: beyond Hartree-Fock!

U(ry,...,ry) = exp(— z:deTDi

* Correlation coming from the Jastrow factor (usually caIIed dynamical correlation)

* Correlation coming from the antisymmetric part (usually called static correlation)




I.Q ->< Correlated wavefunction
0] @

HY(r,....ry)=E¥Y(£,....1y)
Correlation: beyond Hartree-Fock!

U(ry,...,ry) = exp(— z:deTDi

* Correlation coming from the Jastrow factor (usually caIIed dynamical correlation)

* Correlation coming from the antisymmetric part (usually called static correlation)

Drawback: expectation value of the Hamiltonian
= (VIH|P)/(V]P)

becomes much harder to compute than in Hartree-Fock
if a Jastrow-correlated wavefunction is used



I.Q ->< Need of Monte Carlo integration
(0] @

Variational energy E: quantum expectation value of the Hamiltonian H
(VIH|P)
(W)

FE =

Deterministic numerical integration (a la Simpson) in 3N variables
At finite mesh M, its error grows exponentially with N

Stochastic numerical integration on M points
Its error decreases as 1/ M independently of N!!!

In 3D already with 3 particles, the Simpson error decreases slower than 1/v M,
with M number of mesh points

For large N, the stochastic way of performing the integral
is much more efficient!!!
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r2->< Multidimensional integration
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Quadrature (Simpson—like) schemes:

* A regular grid with 10 mesh points per axis would require 104N
evaluations of the integrand, for N particles in d dimensions,
i.e., 1039 operations for 10 particles in 3 dimensions!

* Asimple operation takes say about 10s on a present
computer. A year is about 3 x 10’s.

* Integration by quadrature even for 10 particles would take too
many years!
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I.Q —>< Multidimensional deterministic integration
0] [

Quadrature (Simpson—like) schemes:

* A regular grid with 10 mesh points per axis would require 104N
evaluations of the integrand, for N particles in d dimensions,
i.e., 1039 operations for 10 particles in 3 dimensions!

* Asimple operation takes say about 10s on a present
computer. A year is about 3 x 10’s.

* Integration by quadrature even for 10 particles would take too
many years! About 3 x 103 years!

PS: age of the universe is about 10° years




[R=X€
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* Goal: Computing the integral in a reasonable amount of time at
a fixed target error

e How the error scales with the number of points M?

12/07/2021




I.Q ->< Error scaling for quadrature
(0] m@

® [f we integrate over a hypercube of side L, with a mesh of size h, the
number of grid points is M = (L/h)4V,i.e. h oc M~/(dN),

® Assume that the error o< h'. Hence
error oc 1/MY(&N)

Since [ is of order unity, the error decays exceedingly slowly with M.
In fact, the larger is d - N the slower decays the error.

® For N =10,d = 3,1 = 4 (Simpson rule), halving the error of an

evaluation with M points requires going to
2d-N/l M = 23-10/4 M ~~ 180 - M

points; to reduce it by a factor 4 requires 10°- M points, and so on!

12/07/2021




I.Q ->< Monte Carlo integration
(0] @

® Monte Carlo Integration is the only choice: (Risa d N dimensional vector)

/dR m(R)O(R) ~ % ZO(RZ-), M large

with an

error x 1/vV M,

provided that the configurations or walkers [?; are distributed with the

probability 7r( 1) (in the case of classical Monte Carlo 7(R) = p(R)).

#® To halve the error only 4 - M points are required; 16 - M points are
sufficient to reduce the error by a factor 4; and so on. Also, there is no

dependence on the dimensionality of the configuration space.

12/07/2021




r2->< Reduce the error by a factor of k

d N multidimensional integral
Deterministic intergation Stochastic intergation
anN / 2
M =kt M M = kM

Exponential behavior with N Independent of N

12/07/2021




r2->< Reduce the error by a factor of k

d N multidimensional integral

Stochastic intergation

M' = Ek*M

Independent of N

12/07/2021
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How to generate configurations I?;
distributed according to IT( R;)?

12/07/2021




X=X
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How to generate configurations I?;
distributed according to IT( R;)?

By using random numbers!

12/07/2021




[R=X€

® Random sequence of numbers drawn from an assigned probability ‘

density, say u(x):
u(x)dz = probability that x falls between x and x+dz, / u(x)dr =1

® Uniform variates:

u(z) = 1/(B—a), a<zr<pf, or
u(z) = 1, 0<z<l.

u(y) = eY, 0<y< oo,
uly) = e ¥ /\/m, —oo<y< oo. ‘

12/07/2021




X=X

® Let us concentrate on the uniform distribution (0 < = < 1):

# a proper generator will produce values of x placed at random in
the given interval;

» for large generation numbers the x values will be uniformly
distributedin 0 < z < 1;

» for large generation numbers both the average and variance
calculated on the generated values will reproduce those of the

assigned uniform distribution.

® In practice pseudo random numbers are generated on computers with

deterministic rules [sequences are perfectly reproduciblel].

® In the following we shall assume that a good generator of uniform

variates is provided, disregarding the issue of how to device it.

12/07/2021
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From uniform variate to non-uniform one?

How to generate random numbers
distributed according to non-uniform variates
starting from pseudorandom numbers
uniformely distributed?

12/07/2021
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I.Q —>< Sampling non-uniform variates: the inversion method
camlm

How we can generate non-uniform variates from uniform ones, 7(y) from

u(x) =1, 0 < x < 1? Let us consider the inversion method.

® Look for y = f(x) such that if 2’s are distributed according to u(x),
then y = f(x) are distributed according to 7 (¥).

® Start from

and use u(x) = 1 to get

- / () = W(y).

If W (y) and its inverse are known, y = f(z) = W1(x)

12/07/2021




I.Q —>< Sampling non-uniform variates: the rejection method
cam

. I / I ;
When the inverse of W (y) = [”_ dy'm(y’) is not known
[ 7(y) non-uniform], one may resort to the rejection methods

® Look for f(y) > m(y). Here we choose f(y) = Tmaz-
® Generate a uniform random number y in the domain of 7

® Generate a second uniform random number & in [0, 1]

T(Y)/Tmaz = &, accepty
T(Y)/Tmae < &, rejecty
It is easily seen that y is distributed according to 7(y).
® Note: the normalization of 77 (y) is not necessary!

® Metropolis method is a particular rejection method.

12/07/2021




r2—>< Static and dynamic Monte Carlo (MC) met

The rejection method is a static MC method: it is inefficient.

Points are initially generated uniformly in the domain of 7, treating on
the same footing regions of low and high probability: this becomes

very inefficient as one moves to higher dimensionality.

We need a smarter way in proposing the moves, other than uniform

random numbers!

We have to invent an alternative manner to generate sequences of
states (configurations or sample) {s1, Sa, ..., Sar} , Which at

equilibrium are distributed with the chosen 7 (s).

Using a law whereby s,, is determined only by s,,_1, through a
probability matrix p(s,_1, Sn), naturally leads to the concept of

Markov chains

hods

12/07/2021




r2->< Random Walks (Markov Chains)

A Markov chain is fully specified by the initial distribution, say 7o(s) and by
the transition probability p(s, s’). Markov chains provide a convenient way
to sample multidimensional probability distributions.

The state (or configuration) s of the system is changed randomly according

to the transition probability p(s, s’) = p(s — §') satisfying
S p(s,s) =1 and p(s,s) 20,
3’
thus generating a random walk (or sample) (sg, S1, S2, - - . ).
If p(s, s’) is ergodic there exists a (unique) probability measure 7(s)
satisfying at equilibrium the stationarity condition:

Z m(s)p(s,s) = n(s).

S

12/07/2021




r2->< Detailed balance condition

How to obtain the desired distribution 7T as the stationary one?

A sufficient condition to obtain 7 (s) as stationary distribution is to chose

the transition probability to satisfy
W(S)p(s, S’) = W(S’)p(si, S). Detailed balance condition

In fact summing the above over s one gets

> m(s)p(s,s') =m(s) Y _p(s',s) = m(s).

12/07/2021




r2—>< Sampling and acceptance matrices
Ol 9 |

The transition probability may be conveniently decomposed into the

product of an irreducible proposal or sampling matrix 7'(s, s') and an
acceptance matrix A(s, s')

p(s,s") =T(s,s)A(s,s).

Imposing the detailed balance yields

A(s, s") A m(s)T(s',s) _ .
A(s',s)  7(s)T(s,s) (s, 5),

12/07/2021



I.Q ->< Metropolis choice for acceptance
Ol 9 |

which can be satisfied quite generally by choosing
A(s,s') = Flq(s, s')],
where the function F' : [0, 00| — [0, 1] satisfies

Flz]
F[1/2]

z, forall z.

® Metropolis choice:
F|z] = min|[1, 2]

® An alternative choice could be:

12/07/2021




I.Q —>< Implementation of Metropolis algorithm

Given a probability 71'(8 to sample (with s a state of the system):

® Choose the proposal matrix 7°(s, s')
(usually a homogeneous distribution for A R; in the [—4&, ¢ | interval);

® |Initialize the system in the state sg;

® To advance from s, t0 S, 1:
s sample s’ from T'(sy, s')
(in the case of the homogeous move, s’ = s, + (2r, — 1)4

with uniform random number 7,, € [0, 1|),

» calculate
(T (s, sp)

7(8,)T(8p, 8")’

» generate a random number & uniformly distributed with 0 < & < 1

Q(Sna S,) —

and compare it with £ = min|q(s,, '), 1]:
s ifF>& 58,11 =5

s else S,11 = Sp.

12/07/2021




I.Q ->< Comments on Metropolis
(0] @

e |f the proposal matrix T is chosen to be symmetric,

if R'=R .| < U TI(R,HL
LOR-RI<A AR IR = min 1)

T(R'R)=
R {O elsewhere 0 II(R) ¢

the algorithm is called simple Metropolis.
e The proposal matrix can be non-symmetric to decrease

the correlation time between two configurations
(autocorrelation time); in this case the algorithm is called

generalized Metropolis.



r2->< About the implementation
(0] m@

® Throw away the first k£ states as being out of equilibrium;

® Collect averages using the configurations with n > k and block them

to calculate error bars.

® The normalization of the probability, [ ds 7(s), is never needed and
in fact cannot be calculated (... easily).

® Particles can be moved one at time (single-particle move);

® For the generalized algorithm (1°(s, s’) is not a constant) one has to
sample both forward and reverse transition;

®» An optimal acceptance is

moves accepted
A= P 1 /2.
total moves

In fact the overall efficiency may dictate different choices (see, e.g., DMC).

12/07/2021




I.Q —>< Variational Monte Carlo energy
(0] @
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EVMC_ o * o 2
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I.Q —>< Monte Carlo Estimates and Averages
(0] @

One would like to evaluate the true mean

() = / ds () O(s),

whereas MC yield a sample (s1, Sg, ..., Spr) of length ~ M of states

distributed according to 7(s). Evidently, one can define a sample mean

M
1 | y
O = M _E O?;, with O@ = O(SZ)

i=1
The sample mean is an unbiased estimator of the true mean, i.e.,

(O) = (O) independently of M. Also, it is possible to prove:

® the law of large numbers, lim ;. O = ((9);

12/07/2021




r2->< Central limit theorem

® The central limit theorem, which states that O is normally distributed
around (O).

Central Limit Theorem
de Moivre (1733), Laplace (1812), Lyapunov (1901), Polya (1920)

Lets1, s2, 83, ..., Sps be a sequence of M independent random variables sampled from a probability density
function with a finite expectation value, |1, and variance a2, The central limit theorem states that as the sample

size M increases, the probability density of the sample average of these random variables approaches the

2 —2
normal distribution, \/21—_ exp~ (s=1)"/(257)  with a mean 1, and variance o2 /M irrespective of the
mo

original probability density function.

Therefore we need to evaluate the variance

whose root we may interpret as statistical error on O.

12/07/2021




I.Q ->< Variance of the sample average
(0] @

Using O = (1/M) Zf\il O;, one obtains for the variance

1 & 1 >
2 L ] ) —~ 2
*(0) = W;O(n—mfv W 2 Z;OO t]) = —-0*(0).

Here

C(t) = (0s0541) — (O)°

is the normalized time autocorrelation function, which evidently reduces to
the variance of O at time 0, C'(0) = o(0), and the integrated correlation

= C(t
T:1+2;%0))7

time

12/07/2021
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12y g

accounts for the correlation eX|st|ng between walkers in the Markov chain.
In general 7 > 1.
A sample estimate of C'(t), with a bias of order 1/M is given by

M—|t|
() = 1 > (0:-0)(0ui ~O)

1 & _
— MZ(O _4
1=1

and the correlation time can also be calculated from C'(t).

12/07/2021
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I.z —>< Block average and estimate of errors
0] [

The precise estimate of the error bar requires the calculation of time
correlation functions, which one would rather avoid.

An alternative is provided by the blocking procedure. The sample is broken
in a number of blocks M = Nyny, with N g the number of blocks and and
np the length of each block. New variable are constructed as block

averages
1 &

Opr = — E O (1-1)ny+i;
™

and clearly have a mean equal to the run mean 0. Intuitively, if ny > T,

this new variables should become statistically independent and therefore

TREX e-School on Quantum Monte Carlo with TurboRVB 12/07/2021
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I.Q —>< Block average and estimate of errors
0] [

variance around their mean O given by

INp
1

0'2(Ob) = Nb(Nb — 1) Z(Ob,I — 6)2

I=1

One can indeed show that provided 1, > 7 and yet n;, << M or
equivalently NV, large
c?(Oy) ~ o*(0).

A plot of 0% (Oy) versus n, will reveal a plateau, where in fact the above
relation holds, and therefore it also yields an estimate of the correlation

time.

TREX e-School on Quantum Monte Carlo with TurboRVB 12/07/2021



I.Q —>< Variational Monte Carlo energy
(0] m@

c _(YHY) _RY (RHYR) _ HY(R) [PR)’
M(ww)y [RY(RY¥R) Y(R) [OR|¥R)

= [ BR E,(R)II(R) =(E, ),

H¥(R ¥R’
®) Probability distribution II(R)= ‘ ( )‘

Local E (R)= 2
ocal energy E, (R) ¥R "R |¥(R)

Generate a sample of M points R, distributed according to /7and average E, over
this sample:
1 M
(EL)y [ o E(R)
i=1

TREX e-School on Quantum Monte Carlo with TurboRVB



Ilz ->< Variational Monte Carlo algorithm
(0] @

With the aim to obtain a set of {R,,...,R,, !distributed as /7

1\/]

1. Pick a starting R; and initialize the configuration

2. Advance the configuration from R;to R;
a) Sample R’from T(R'|R))
TR, [R)II(R)

T(R'[R)I(R;)
c) Accept or reject with probability F=min[q,1]

b) Calculate the ratio g=

pick a uniformly distributed random number p[] [0,]]
if p <F, move accepted mmmp set R,=R’

if pl_F, move rejected mmmp set R;=R,
3. Throw away first k configurations of equilibration time
4. Collect the averages and block them to obtain the error bars

TREX e-School on Quantum Monte Carlo with TurboRVB



I.Q ->< Zero variance principle
(0] m@

Within VMC, we can use any “computable” wave function, if it is

e Continuous, normalizable, proper symmetry

¢ Finite variance

2 ¥ (H_ EVMC)2 ¥ 2
o :< ‘ <\P‘\P> ‘ >:<(EL —Eye) >\P

2

since the Monte Carlo error goesas g oc o

Zero variance principle

If the wave function ¥ is an exact eigenstate of H, the local energy E, is a constant, and
the variance is zero.

Therefore, the closer the wave function to an eigenstate, the faster the convergence of
Monte Carlo error with the number of samples M.
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